搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

X形超阻尼局域共振声子晶体梁弯曲振动带隙特性

杜春阳 郁殿龙 刘江伟 温激鸿

引用本文:
Citation:

X形超阻尼局域共振声子晶体梁弯曲振动带隙特性

杜春阳, 郁殿龙, 刘江伟, 温激鸿

Flexural vibration band gaps for a phononic crystal beam with X-shaped local resonance metadamping structure

Du Chun-Yang, Yu Dian-Long, Liu Jiang-Wei, Wen Ji-Hong
PDF
导出引用
  • 以声子晶体理论为基础,设计了一种具有超阻尼特性的X形局域共振结构,分析了周期性附加X形局域共振的梁弯曲振动传播特性.利用拉格朗日方程分析了X形局域共振结构动力学等效特性,揭示了该结构的阻尼放大的机理,分析了几何结构参数对于带隙特性的影响,并利用有限元法验证了X形局域共振结构的超阻尼特性.研究结果表明,周期性附加X形局域结构能够有效地抑制低频弯曲振动在梁中的传播,产生超阻尼特性,实现低频、宽带的减振效果,为结构的低频减振提供了一个新的设计方案.
    Structural vibration is commonly seen in engineering, which can cause resonance and fatigue damage in structure. Therefore, it is very desirable in vibration control techniques to achieve structure with low-frequency and broadband damping feature. In this paper, we design a phononic crystal (PC) beam with X-shaped locally resonant metadamping (X-LRMD) structures. Based on the PC theory, the flexural wave propagation in X-LRMD beam is studied. The equivalent dynamic properties of the X LRMD structure are analyzed by Lagrange equation. It is shown that due to its geometric nonlinearity, the X LRMD can effectively increase the damping of the system, which is validated by the transfer matrix method. The influence of structural parameters of X LRMD on band gap characteristics of the PC beam is then discussed in detail by using the finite element method with COMSOL multiphysics software in conjunction with Matlab, where the PC beam with X LRMD is modeled with the multi-body dynamic module within COMSOL and the band gap characteristics are calculated. The damping properties of the system are studied also using the finite element method. It is shown that compared with the equivalent structures, the PC beam with X LRMD can magnify the damping of the structure system, demonstrating a meta-damping phenomenon. The X LRMD in the PC beam can not only generate lower frequency and wider range band gaps but also suppress the vibration in passband ranges. This can bring a new design for reducing the vibration of structural systems.
      通信作者: 郁殿龙, dianlongyu@vip.sina.com
    • 基金项目: 国家自然科学基金(批准号:11372346)资助的课题.
      Corresponding author: Yu Dian-Long, dianlongyu@vip.sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11372346).
    [1]

    Ding W J 2014 Damping Theory (Beijing: Tsinghua Press) pp1-4 (in Chinese) [丁文镜 2014 减振理论(北京: 清华大学出版社) 第1-4页]

    [2]

    Silva C W (translated by Li H B, Zhang M) 2013 Vibration Damping, Control and Design (Beijing: Mechanical Industry Press) pp243-246 (in Chinese) [Silva C W著 (李惠彬, 张曼 译) 2013振动阻尼、控制和设计 (北京: 机械工业出版社) 第243-246页]

    [3]

    Wen X S 2006 Theory and Technology of Photonic/Phononic Crystals (Beijing: Science Press) pp5-7 (in Chinese) [温熙森 2006 光子/声子晶体理论与技术(北京: 科学出版社) 第5-7页]

    [4]

    Wen X S, Wen J H, Yu D L, et al. 2009 Photonic Crystal (Beijing: National Defence Industry Press) pp8-10 (in Chinese) [温熙森, 温激鸿, 郁殿龙 等 2009 声子晶体(北京: 国防工业出版社) 第8-10页]

    [5]

    Shu H S, Zhang F, Liu S G, Gao E W, Li S D 2014 J. Vib. Shock 33 147 (in Chinese) [舒海生, 张法, 刘少刚, 高恩武, 李世丹 2014 振动与冲击 33 147]

    [6]

    Ma G C, Fu C X, Wang G H, Hougne del P, Christensen J, Lai Y, Sheng P 2016 Nat. Commun. 7 13536

    [7]

    Liu Z, Zhang X, Mao Y, Zhu Y Y, Yang Z, Chan C T, Sheng P 2000 Science 289 1734

    [8]

    Wu J H, Zhang S W, Shen L 2013 Chin. J. Mech. 49 62 (in Chinese) [吴九汇, 张思文, 沈礼 2013 机械工程学报 49 62]

    [9]

    Zhang Y, Yin J F, Wen J H, Yu D L 2016 J. Vib. Shock 35 26 (in Chinese) [张印, 尹剑飞, 温激鸿, 郁殿龙 2016 振动与冲击 35 26]

    [10]

    Zhang J L, Yao H, Du J, Zhao J B, Dong Y K 2016 Bull. Chin. Ceram. Soc. 35 2767 (in Chinese) [张佳龙, 姚宏, 杜军, 赵静波, 董亚科 2016 硅酸盐通报 35 2767]

    [11]

    Qi P S, Du J, Jiang J L, Dong Y K, Zhang J L 2016 J. Synthetic Cryst. 45 1094 (in Chinese) [祁鹏山, 杜军, 姜久龙, 董亚科, 张佳龙 2016 人工晶体学报 45 1094]

    [12]

    Chen L, Wu W G, Zhou R 2016 Tech. Acoust. 35 222 (in Chinese) [陈琳, 吴卫国, 周榕 2016 声学技术 35 222]

    [13]

    Hussein M I, Frazier M J 2013 J. Sound Vib. 332 4767

    [14]

    Nouh M, Aldraihen O, Baz A 2015 J. Sound Vib. 341 53

    [15]

    Frazier M J, Hussein M I 2015 J. Acoust. Soc. Am. 138 3169

    [16]

    Wu Q, Ling D S, Xu X 1997 J. Zhejiang Univ. - Sci. A 4 462 (in Chinese) [吴强, 凌道盛, 徐兴 1997 浙江大学学报 4 462]

    [17]

    Wu X, Yang L J 2008 J. Vib. Shock 2 771 (in Chinese) [吴晓, 杨立军 2008 振动与冲击 2 771]

    [18]

    Liu C C, Jing X J, Li F M 2015 Int. J. Mech. Sci. 98 169

    [19]

    Sun X T, Jing X J 2015 Mech. Syst. Signal Pr. 62 149

    [20]

    Sun X T, Jing X J 2016 Mech. Syst. Signal Pr. 80 166

    [21]

    Sun X T, Jing X J, Xu J, Cheng L 2014 J. Sound Vib. 333 2404

    [22]

    Huang Y Y, Zhao Y G, Zhao W D 2011 J. Qinghai Univ. 2 912 (in Chinese) [黄永玉, 赵永刚, 赵伟东 2011 青海大学学报 2 912]

    [23]

    Manimala J M, Huang H H, Sun C T, Snyder R, Bland S 2014 Eng. Struct. 80 458

    [24]

    Wang Z F 2001 J. Shandong Univ. Technol. 1 51 (in Chinese) [王振发 2001 齐鲁工业大学学报 1 51]

    [25]

    Wang G, Wen J H, Wen X S, Yu D L, Liu Y Z 2005 Chin. J. Mech. 41 107 (in Chinese) [王刚, 温激鸿, 温熙森, 郁殿龙, 刘耀宗 2005 机械工程学报 41 107]

    [26]

    Li L, Liu Y Z, Yu D L 2006 J. Vib. Shock 25 632 (in Chinese) [李黎, 刘耀宗, 郁殿龙 2006 振动与冲击 25 632]

    [27]

    Wen Q H, Zuo S G, Wei H 2012 Acta Phys. Sin. 61 034301 (in Chinese) [文岐华, 左曙光, 魏欢 2012 物理学报 61 034301]

    [28]

    Zhang Y F 2014 M. S. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [张亚峰 2014 硕士学位论文 (长沙: 国防科学技术大学)]

    [29]

    Zhang H, Wen J H, Xiao Y, Wang G, Wen X S 2015 J. Sound Vib. 343 104

    [30]

    Zhang H, Xiao Y, Wen J H, Yu D L, Wen X S 2016 Appl. Phys. Lett. 108 1734

    [31]

    Mei J, Ma G, Yang M, Yang Z, Wen W, Sheng P 2012 Nat. Commun. 3 132

  • [1]

    Ding W J 2014 Damping Theory (Beijing: Tsinghua Press) pp1-4 (in Chinese) [丁文镜 2014 减振理论(北京: 清华大学出版社) 第1-4页]

    [2]

    Silva C W (translated by Li H B, Zhang M) 2013 Vibration Damping, Control and Design (Beijing: Mechanical Industry Press) pp243-246 (in Chinese) [Silva C W著 (李惠彬, 张曼 译) 2013振动阻尼、控制和设计 (北京: 机械工业出版社) 第243-246页]

    [3]

    Wen X S 2006 Theory and Technology of Photonic/Phononic Crystals (Beijing: Science Press) pp5-7 (in Chinese) [温熙森 2006 光子/声子晶体理论与技术(北京: 科学出版社) 第5-7页]

    [4]

    Wen X S, Wen J H, Yu D L, et al. 2009 Photonic Crystal (Beijing: National Defence Industry Press) pp8-10 (in Chinese) [温熙森, 温激鸿, 郁殿龙 等 2009 声子晶体(北京: 国防工业出版社) 第8-10页]

    [5]

    Shu H S, Zhang F, Liu S G, Gao E W, Li S D 2014 J. Vib. Shock 33 147 (in Chinese) [舒海生, 张法, 刘少刚, 高恩武, 李世丹 2014 振动与冲击 33 147]

    [6]

    Ma G C, Fu C X, Wang G H, Hougne del P, Christensen J, Lai Y, Sheng P 2016 Nat. Commun. 7 13536

    [7]

    Liu Z, Zhang X, Mao Y, Zhu Y Y, Yang Z, Chan C T, Sheng P 2000 Science 289 1734

    [8]

    Wu J H, Zhang S W, Shen L 2013 Chin. J. Mech. 49 62 (in Chinese) [吴九汇, 张思文, 沈礼 2013 机械工程学报 49 62]

    [9]

    Zhang Y, Yin J F, Wen J H, Yu D L 2016 J. Vib. Shock 35 26 (in Chinese) [张印, 尹剑飞, 温激鸿, 郁殿龙 2016 振动与冲击 35 26]

    [10]

    Zhang J L, Yao H, Du J, Zhao J B, Dong Y K 2016 Bull. Chin. Ceram. Soc. 35 2767 (in Chinese) [张佳龙, 姚宏, 杜军, 赵静波, 董亚科 2016 硅酸盐通报 35 2767]

    [11]

    Qi P S, Du J, Jiang J L, Dong Y K, Zhang J L 2016 J. Synthetic Cryst. 45 1094 (in Chinese) [祁鹏山, 杜军, 姜久龙, 董亚科, 张佳龙 2016 人工晶体学报 45 1094]

    [12]

    Chen L, Wu W G, Zhou R 2016 Tech. Acoust. 35 222 (in Chinese) [陈琳, 吴卫国, 周榕 2016 声学技术 35 222]

    [13]

    Hussein M I, Frazier M J 2013 J. Sound Vib. 332 4767

    [14]

    Nouh M, Aldraihen O, Baz A 2015 J. Sound Vib. 341 53

    [15]

    Frazier M J, Hussein M I 2015 J. Acoust. Soc. Am. 138 3169

    [16]

    Wu Q, Ling D S, Xu X 1997 J. Zhejiang Univ. - Sci. A 4 462 (in Chinese) [吴强, 凌道盛, 徐兴 1997 浙江大学学报 4 462]

    [17]

    Wu X, Yang L J 2008 J. Vib. Shock 2 771 (in Chinese) [吴晓, 杨立军 2008 振动与冲击 2 771]

    [18]

    Liu C C, Jing X J, Li F M 2015 Int. J. Mech. Sci. 98 169

    [19]

    Sun X T, Jing X J 2015 Mech. Syst. Signal Pr. 62 149

    [20]

    Sun X T, Jing X J 2016 Mech. Syst. Signal Pr. 80 166

    [21]

    Sun X T, Jing X J, Xu J, Cheng L 2014 J. Sound Vib. 333 2404

    [22]

    Huang Y Y, Zhao Y G, Zhao W D 2011 J. Qinghai Univ. 2 912 (in Chinese) [黄永玉, 赵永刚, 赵伟东 2011 青海大学学报 2 912]

    [23]

    Manimala J M, Huang H H, Sun C T, Snyder R, Bland S 2014 Eng. Struct. 80 458

    [24]

    Wang Z F 2001 J. Shandong Univ. Technol. 1 51 (in Chinese) [王振发 2001 齐鲁工业大学学报 1 51]

    [25]

    Wang G, Wen J H, Wen X S, Yu D L, Liu Y Z 2005 Chin. J. Mech. 41 107 (in Chinese) [王刚, 温激鸿, 温熙森, 郁殿龙, 刘耀宗 2005 机械工程学报 41 107]

    [26]

    Li L, Liu Y Z, Yu D L 2006 J. Vib. Shock 25 632 (in Chinese) [李黎, 刘耀宗, 郁殿龙 2006 振动与冲击 25 632]

    [27]

    Wen Q H, Zuo S G, Wei H 2012 Acta Phys. Sin. 61 034301 (in Chinese) [文岐华, 左曙光, 魏欢 2012 物理学报 61 034301]

    [28]

    Zhang Y F 2014 M. S. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [张亚峰 2014 硕士学位论文 (长沙: 国防科学技术大学)]

    [29]

    Zhang H, Wen J H, Xiao Y, Wang G, Wen X S 2015 J. Sound Vib. 343 104

    [30]

    Zhang H, Xiao Y, Wen J H, Yu D L, Wen X S 2016 Appl. Phys. Lett. 108 1734

    [31]

    Mei J, Ma G, Yang M, Yang Z, Wen W, Sheng P 2012 Nat. Commun. 3 132

  • [1] 韩东海, 张广军, 赵静波, 姚宏. 新型Helmholtz型声子晶体的低频带隙及隔声特性研究. 物理学报, 2022, (): . doi: 10.7498/aps.71.20211932
    [2] 谭自豪, 孙小伟, 宋婷, 温晓东, 刘禧萱, 刘子江. 球形复合柱表面波声子晶体的带隙特性仿真. 物理学报, 2021, 70(14): 144301. doi: 10.7498/aps.70.20210165
    [3] 刘艳玲, 刘文静, 包佳美, 曹永军. 二维复式晶格磁振子晶体的带隙结构. 物理学报, 2016, 65(15): 157501. doi: 10.7498/aps.65.157501
    [4] 陈阿丽, 梁同利, 汪越胜. 二维8重固-流型准周期声子晶体带隙特性研究. 物理学报, 2014, 63(3): 036101. doi: 10.7498/aps.63.036101
    [5] 张思文, 吴九汇. 局域共振复合单元声子晶体结构的低频带隙特性研究. 物理学报, 2013, 62(13): 134302. doi: 10.7498/aps.62.134302
    [6] 文岐华, 左曙光, 魏欢. 多振子梁弯曲振动中的局域共振带隙. 物理学报, 2012, 61(3): 034301. doi: 10.7498/aps.61.034301
    [7] 胡家光, 徐文, 肖宜明, 张丫丫. 晶格中心插入体的对称性及取向对二维声子晶体带隙的影响. 物理学报, 2012, 61(23): 234302. doi: 10.7498/aps.61.234302
    [8] 王立勇, 曹永军. 散射体排列方式对二维磁振子晶体带隙结构的影响. 物理学报, 2011, 60(9): 097501. doi: 10.7498/aps.60.097501
    [9] 高国钦, 马守林, 金峰, 金东范, 卢天健. 声波在二维固/流声子晶体中的禁带特性研究. 物理学报, 2010, 59(1): 393-400. doi: 10.7498/aps.59.393
    [10] 陈圣兵, 韩小云, 郁殿龙, 温激鸿. 不同压电分流电路对声子晶体梁带隙的影响. 物理学报, 2010, 59(1): 387-392. doi: 10.7498/aps.59.387
    [11] 许振龙, 吴福根. 基元配置对二维光子晶体不同能带之间带隙的调节和优化. 物理学报, 2009, 58(9): 6285-6290. doi: 10.7498/aps.58.6285
    [12] 郝国郡, 傅秀军, 侯志林. 正方点阵上Fibonacci超元胞声子晶体的带结构. 物理学报, 2009, 58(12): 8484-8488. doi: 10.7498/aps.58.8484
    [13] 牟中飞, 吴福根, 张 欣, 钟会林. 超元胞方法研究平移群对称性对声子带隙的影响. 物理学报, 2007, 56(8): 4694-4699. doi: 10.7498/aps.56.4694
    [14] 钟会林, 吴福根, 姚立宁. 遗传算法在二维声子晶体带隙优化中的应用. 物理学报, 2006, 55(1): 275-280. doi: 10.7498/aps.55.275
    [15] 蔡 力, 韩小云. 二维声子晶体带结构的多散射分析及解耦模式. 物理学报, 2006, 55(11): 5866-5871. doi: 10.7498/aps.55.5866
    [16] 赵 芳, 苑立波. 二维复式格子声子晶体带隙结构特性. 物理学报, 2005, 54(10): 4511-4516. doi: 10.7498/aps.54.4511
    [17] 温激鸿, 王 刚, 刘耀宗, 郁殿龙. 基于集中质量法的一维声子晶体弹性波带隙计算. 物理学报, 2004, 53(10): 3384-3388. doi: 10.7498/aps.53.3384
    [18] 齐共金, 杨盛良, 白书欣, 赵 恂. 基于平面波算法的二维声子晶体带结构的研究. 物理学报, 2003, 52(3): 668-671. doi: 10.7498/aps.52.668
    [19] 王 刚, 温激鸿, 韩小云, 赵宏刚. 二维声子晶体带隙计算中的时域有限差分方法. 物理学报, 2003, 52(8): 1943-1947. doi: 10.7498/aps.52.1943
    [20] 庄飞, 吴良, 何赛灵. 用线性变换方法计算二维正方晶胞正n边形直柱光子晶体的带隙结构. 物理学报, 2002, 51(12): 2865-2870. doi: 10.7498/aps.51.2865
计量
  • 文章访问数:  3370
  • PDF下载量:  321
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-07
  • 修回日期:  2017-04-19
  • 刊出日期:  2017-07-05

X形超阻尼局域共振声子晶体梁弯曲振动带隙特性

  • 1. 国防科学技术大学, 装备综合保障技术重点实验室, 长沙 410073
  • 通信作者: 郁殿龙, dianlongyu@vip.sina.com
    基金项目: 国家自然科学基金(批准号:11372346)资助的课题.

摘要: 以声子晶体理论为基础,设计了一种具有超阻尼特性的X形局域共振结构,分析了周期性附加X形局域共振的梁弯曲振动传播特性.利用拉格朗日方程分析了X形局域共振结构动力学等效特性,揭示了该结构的阻尼放大的机理,分析了几何结构参数对于带隙特性的影响,并利用有限元法验证了X形局域共振结构的超阻尼特性.研究结果表明,周期性附加X形局域结构能够有效地抑制低频弯曲振动在梁中的传播,产生超阻尼特性,实现低频、宽带的减振效果,为结构的低频减振提供了一个新的设计方案.

English Abstract

参考文献 (31)

目录

    /

    返回文章
    返回