搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

简并态锗在大注入下的自发辐射谱模拟

汪建元 林光杨 王佳琪 李成

引用本文:
Citation:

简并态锗在大注入下的自发辐射谱模拟

汪建元, 林光杨, 王佳琪, 李成

Simulation of spontaneous emission spectrum of degenerate Ge under large injection level

Wang Jian-Yuan, Lin Guang-Yang, Wang Jia-Qi, Li Cheng
PDF
导出引用
  • 基于费米狄拉克模型模拟了应变、温度以及掺杂对简并态锗的直接带自发辐射谱的影响.随着温度升高,更多的电子被激发到导带中,使得锗自发辐射谱的峰值强度和积分强度随温度的升高而增大.对自发辐射谱峰值强度的m因子进行计算, 结果表明张应变可以显著提高锗自发辐射的温度稳定性.在相同应变水平下,由-hh跃迁引起的自发辐射谱峰值强度大于-1h跃迁引起的自发辐射谱峰值强度,但二者的积分强度几乎相等.此外,计算结果还证明了n型掺杂能显著提高锗的自发辐射强度.以上结果对于研究简并态半导体的自发辐射性质有重要的参考意义.
    Germanium (Ge) is considered as a promising material for silicon (Si) based light source. Based on tensile strain and n-type heavy doping approaches, the light emitting efficiency of Ge can be improved. Nevertheless, due to the difficulty in introducing large tensile strain into Ge, the photoluminescence or electroluminescence of Ge is demonstrated under degenerated states currently. Traditional spontaneous emission (SE) theory deduced from Boltzmann approximation is inapplicable for this case. To accurately analyze the SE properties of Ge, the influences of strain, temperature and doping on quasi-Fermi level and subsequent SE spectrum of degenerated Ge are theoretically investigated based on Fermi-Dirac distribution model. Owing to large density of states (DOS) in heavy hole (hh) the valance band (VB) and L valley, it is found that compressive strain has a negligible effect on the quasi-Fermi level under carrier concentration of 1019-1020 cm-3, while tensile strain is of benefit to the improvement of carrier occupation levels, leading to dramatic increases of both peak and integrated intensities of SE spectra. Although the peak intensity of SE from -hh transition is larger than that from -1h transition regardless of strain levels in Ge, the integrated intensities of SE from -hh and -1h transitions are almost equal. With the increase of sample temperature, the carriers acquire lager kinetic energy, resulting in more dispersive distribution of electrons (holes) in valley (VB). However, more electrons (holes) are induced into conduction (valence) band at the same time. And according to Varshini's law the energy difference between and L valleys is reduced at higher temperature. Thus, both the peak and integrated intensities of the SE spectra become larger at higher temperature. It is impressive that n-type doping can greatly enhance the SE intensity compared with p-type doping irrespective of strain levels in Ge, demonstrating the significance of n-type doping in the enhancement of Ge SE. Furthermore, it is found that m factors, which can be extracted from linear fitting of log L-log n curves, diminish at heavier doping concentration. Under tensile strain condition, the variation of m factors for Ge SE with the sample temperature becomes less sensitive, implying that the tensile strain can effectively enhance the temperature stability of Ge SE. These results provide a significant guidance for analyzing the SE properties of degenerated Ge and other degenerated semiconductors.
      通信作者: 李成, lich@xmu.edu.cn
    • 基金项目: 国家重点基础研究计划(批准号:2013CB632103)和国家自然科学基金(批准号:61474094)资助的课题.
      Corresponding author: Li Cheng, lich@xmu.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No.2013CB632103) and the National Natural Science Foundation of China (Grant No.61474094).
    [1]

    Sun X C, Liu J F, Kimerling L C, Michel J 2010 IEEE J. Sel. Top. Quantum Electron. 16 124

    [2]

    Ghrib A, Kersauson M D, Kurdi M E, Jakomin R, Beaudoin G, Sauvage S, Fishman G, Ndong G, Chaigneau M, Ossikovski R, Sagnes I, Boucaud P 2012 Appl. Phys. Lett. 100 201104

    [3]

    Cai Y, Han Z H, Wang X X, Rodolfo E, Aguilera C, Kimerling L C, Michel J, Liu J F 2013 IEEE J. Sel. Top. Quantum Electron. 19 1901009

    [4]

    Lin G Y, Wang C, Li C, Chen C W, Huang Z W, Huang W, Chen S Y, Lai H K, Jin C Y, Sun J M 2016 Appl. Phys. Lett. 108 191107

    [5]

    Michael O, Martin G, Daniel W, Marc S, Mathias K, Erich K, Jrg S 2013 Opt. Express 21 2206

    [6]

    Lin G Y, Yi X H, Li C, Chen N L, Zhang L, Chen S Y, Huang W, Wang J Y, Xiong X H, Sun J M 2016 Appl. Phys. Lett. 109 141104

    [7]

    Bernhard S, Andr K, Martin K, Michael O, Erich K, Jrg S 2014 Phys. Status Solidi C 11 1686

    [8]

    Liu Z, Hu W X, Li C, Li Y M, Xue C L, Li C B, Zuo Y H, Cheng B W, Wang Q M 2012 Appl. Phys. Lett. 101 231108

    [9]

    Lin G Y, Chen N L, Zhang L, Huang Z W, Huang W, Wang J Y, Xu J F, Chen S Y, Li C 2016 Materials 9 803

    [10]

    Rodolfo E, Camacho A, Cai Y, Neil P, Bessette J T, Marco R, Kimerling L C, Jurgen M 2012 Opt. Express 20 11316

    [11]

    Schubert E F, Gessmann T, Kim J K 2005 Light Emitting Diodes Kirk-Othmer Encyclopedia of Chemical Technology

    [12]

    Huang S H, Li C, Chen C Z, Zheng Y Y, Lai H K, Chen S Y 2012 Acta Phys. Sin. 61 036202 (in Chinese) [黄诗浩, 李成, 陈城钊, 郑元宇, 赖虹凯, 陈松岩 2012 物理学报 61 036202]

    [13]

    van de Walle C G 1989 Phys. Rev. B 39 1871

    [14]

    Varshni Y P 1967 Physica 34 149

    [15]

    Liu J F, Cannon D D, Kazumi W, Yasuhiko I, David T D, Samerkhae J, Michel J, Lionel C K 2004 Phys. Rev. B 70 155309

    [16]

    Wortman J J, Evans R A 1965 J. Appl. Phys. 36 153

    [17]

    Cheng S L, Lu J, Shambat G, Yu H Y, Saraswat K, Vuckovic J, Nishi Y 2009 Opt. Express 17 10019

    [18]

    Capellini G, Reich C, Guha S, Yamamoto Y, Lisker M, Virgilio M, Ghrib A, Kurdi M E, Boucaud P, Tillack B, Schroeder T 2014 Opt. Express 22 399

    [19]

    Rodolfo C A, Han Z H, Cai Y, Lionel C K, Jurgen M 2013 Appl. Phys. Lett. 102 152106

    [20]

    Hu W X, Cheng B W, Xue C L, Xue H Y, Su S J, Bai A Q, Luo L P, Yu Y D, Wang Q M 2009 Appl. Phys. Lett. 95 092102

  • [1]

    Sun X C, Liu J F, Kimerling L C, Michel J 2010 IEEE J. Sel. Top. Quantum Electron. 16 124

    [2]

    Ghrib A, Kersauson M D, Kurdi M E, Jakomin R, Beaudoin G, Sauvage S, Fishman G, Ndong G, Chaigneau M, Ossikovski R, Sagnes I, Boucaud P 2012 Appl. Phys. Lett. 100 201104

    [3]

    Cai Y, Han Z H, Wang X X, Rodolfo E, Aguilera C, Kimerling L C, Michel J, Liu J F 2013 IEEE J. Sel. Top. Quantum Electron. 19 1901009

    [4]

    Lin G Y, Wang C, Li C, Chen C W, Huang Z W, Huang W, Chen S Y, Lai H K, Jin C Y, Sun J M 2016 Appl. Phys. Lett. 108 191107

    [5]

    Michael O, Martin G, Daniel W, Marc S, Mathias K, Erich K, Jrg S 2013 Opt. Express 21 2206

    [6]

    Lin G Y, Yi X H, Li C, Chen N L, Zhang L, Chen S Y, Huang W, Wang J Y, Xiong X H, Sun J M 2016 Appl. Phys. Lett. 109 141104

    [7]

    Bernhard S, Andr K, Martin K, Michael O, Erich K, Jrg S 2014 Phys. Status Solidi C 11 1686

    [8]

    Liu Z, Hu W X, Li C, Li Y M, Xue C L, Li C B, Zuo Y H, Cheng B W, Wang Q M 2012 Appl. Phys. Lett. 101 231108

    [9]

    Lin G Y, Chen N L, Zhang L, Huang Z W, Huang W, Wang J Y, Xu J F, Chen S Y, Li C 2016 Materials 9 803

    [10]

    Rodolfo E, Camacho A, Cai Y, Neil P, Bessette J T, Marco R, Kimerling L C, Jurgen M 2012 Opt. Express 20 11316

    [11]

    Schubert E F, Gessmann T, Kim J K 2005 Light Emitting Diodes Kirk-Othmer Encyclopedia of Chemical Technology

    [12]

    Huang S H, Li C, Chen C Z, Zheng Y Y, Lai H K, Chen S Y 2012 Acta Phys. Sin. 61 036202 (in Chinese) [黄诗浩, 李成, 陈城钊, 郑元宇, 赖虹凯, 陈松岩 2012 物理学报 61 036202]

    [13]

    van de Walle C G 1989 Phys. Rev. B 39 1871

    [14]

    Varshni Y P 1967 Physica 34 149

    [15]

    Liu J F, Cannon D D, Kazumi W, Yasuhiko I, David T D, Samerkhae J, Michel J, Lionel C K 2004 Phys. Rev. B 70 155309

    [16]

    Wortman J J, Evans R A 1965 J. Appl. Phys. 36 153

    [17]

    Cheng S L, Lu J, Shambat G, Yu H Y, Saraswat K, Vuckovic J, Nishi Y 2009 Opt. Express 17 10019

    [18]

    Capellini G, Reich C, Guha S, Yamamoto Y, Lisker M, Virgilio M, Ghrib A, Kurdi M E, Boucaud P, Tillack B, Schroeder T 2014 Opt. Express 22 399

    [19]

    Rodolfo C A, Han Z H, Cai Y, Lionel C K, Jurgen M 2013 Appl. Phys. Lett. 102 152106

    [20]

    Hu W X, Cheng B W, Xue C L, Xue H Y, Su S J, Bai A Q, Luo L P, Yu Y D, Wang Q M 2009 Appl. Phys. Lett. 95 092102

  • [1] 苏玉凤, 彭金璋, 杨红, 黄勇刚. 金属纳米柱的端面修饰对自发辐射增强特性的影响研究. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220439
    [2] 颜俊, 王子毅, 曾若生, 邹炳锁. 零维Sb3+掺杂Rb7Bi3Cl16金属卤化物的三重态自陷激子发射. 物理学报, 2021, 70(24): 247801. doi: 10.7498/aps.70.20211024
    [3] 左博敏, 袁健美, 冯志, 毛宇亮. 应力调控下二维硒化锗五种同分异构体的第一性原理研究. 物理学报, 2019, 68(11): 113103. doi: 10.7498/aps.68.20182266
    [4] 邢容, 谢双媛, 许静平, 羊亚平. 动态光子晶体中V型三能级原子的自发辐射. 物理学报, 2017, 66(1): 014202. doi: 10.7498/aps.66.014202
    [5] 秦黎, 李泽亚, 许静平, 张利伟, 羊亚平. 磁单负材料板附近的原子的自发辐射场分布. 物理学报, 2015, 64(1): 014206. doi: 10.7498/aps.64.014206
    [6] 杨双波. 温度与外磁场对Si均匀掺杂的GaAs量子阱电子态结构的影响. 物理学报, 2014, 63(5): 057301. doi: 10.7498/aps.63.057301
    [7] 邢容, 谢双媛, 许静平, 羊亚平. 动态各向同性光子晶体中二能级原子的自发辐射. 物理学报, 2014, 63(9): 094205. doi: 10.7498/aps.63.094205
    [8] 王玉珍, 马颖, 周益春. 外延压应变对BaTiO3铁电体抗辐射性能影响的分子动力学研究. 物理学报, 2014, 63(24): 246101. doi: 10.7498/aps.63.246101
    [9] 刘玮洁, 孙正昊, 黄宇欣, 冷静, 崔海宁. 不同价态稀土元素Yb掺杂ZnO的电子结构和光学性质. 物理学报, 2013, 62(12): 127101. doi: 10.7498/aps.62.127101
    [10] 杨双波. 掺杂浓度及掺杂层厚度对Si均匀掺杂的GaAs量子阱中电子态结构的影响. 物理学报, 2013, 62(15): 157301. doi: 10.7498/aps.62.157301
    [11] 黄诗浩, 李成, 陈城钊, 郑元宇, 赖虹凯, 陈松岩. N型掺杂应变Ge发光性质. 物理学报, 2012, 61(3): 036202. doi: 10.7498/aps.61.036202
    [12] 顾芳, 张加宏, 杨丽娟, 顾斌. 应变石墨烯纳米带谐振特性的分子动力学研究. 物理学报, 2011, 60(5): 056103. doi: 10.7498/aps.60.056103
    [13] 黄仙山, 刘海莲. 运用动态腔环境实现对原子自发辐射过程的调控. 物理学报, 2011, 60(3): 034205. doi: 10.7498/aps.60.034205
    [14] 陈翔, 米贤武. 二能级原子与高品质因子腔的自发辐射特性. 物理学报, 2011, 60(10): 104204. doi: 10.7498/aps.60.104204
    [15] 姚 飞, 薛春来, 成步文, 王启明. 重掺B对应变SiGe材料能带结构的影响. 物理学报, 2007, 56(11): 6654-6659. doi: 10.7498/aps.56.6654
    [16] 王焕友, 曹晓平, 蒋亦民, 刘 佑. 静止颗粒体的应变与弹性. 物理学报, 2005, 54(6): 2784-2790. doi: 10.7498/aps.54.2784
    [17] 谭 荣, 李高翔. 低频强场作用下三维光子晶体中二能级原子的自发辐射性质. 物理学报, 2005, 54(5): 2059-2065. doi: 10.7498/aps.54.2059
    [18] 刘晓东, 李曙光, 许兴胜, 王义全, 程丙英, 张道中. 用不同密度分布的发光分子探测光子晶体的全态密度. 物理学报, 2004, 53(1): 132-136. doi: 10.7498/aps.53.132
    [19] 刘晓东, 王义全, 许兴胜, 程丙英, 张道中. 具有态守恒赝隙的光子晶体中两能级原子自发辐射的增强与抑制. 物理学报, 2004, 53(1): 125-131. doi: 10.7498/aps.53.125
    [20] 陈 三, 谢双媛, 羊亚平, 陈 鸿. 双能带三维光子晶体中二能级原子的自发辐射. 物理学报, 2003, 52(4): 853-858. doi: 10.7498/aps.52.853
计量
  • 文章访问数:  2935
  • PDF下载量:  107
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-08
  • 修回日期:  2017-05-16
  • 刊出日期:  2017-08-05

简并态锗在大注入下的自发辐射谱模拟

  • 1. 厦门大学物理学系, 协同创新中心, 半导体光子学研究中心, 厦门 361005
  • 通信作者: 李成, lich@xmu.edu.cn
    基金项目: 国家重点基础研究计划(批准号:2013CB632103)和国家自然科学基金(批准号:61474094)资助的课题.

摘要: 基于费米狄拉克模型模拟了应变、温度以及掺杂对简并态锗的直接带自发辐射谱的影响.随着温度升高,更多的电子被激发到导带中,使得锗自发辐射谱的峰值强度和积分强度随温度的升高而增大.对自发辐射谱峰值强度的m因子进行计算, 结果表明张应变可以显著提高锗自发辐射的温度稳定性.在相同应变水平下,由-hh跃迁引起的自发辐射谱峰值强度大于-1h跃迁引起的自发辐射谱峰值强度,但二者的积分强度几乎相等.此外,计算结果还证明了n型掺杂能显著提高锗的自发辐射强度.以上结果对于研究简并态半导体的自发辐射性质有重要的参考意义.

English Abstract

参考文献 (20)

目录

    /

    返回文章
    返回