搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Nd-Ce-Fe-B纳米复合薄膜的磁性及交换耦合作用

孙亚超 朱明刚 石晓宁 宋利伟 李卫

引用本文:
Citation:

Nd-Ce-Fe-B纳米复合薄膜的磁性及交换耦合作用

孙亚超, 朱明刚, 石晓宁, 宋利伟, 李卫

Magnetic properties and exchange coupling of Nd-Ce-Fe-B nanocomposite films

Sun Ya-Chao, Zhu Ming-Gang, Shi Xiao-Ning, Song Li-Wei, Li Wei
PDF
导出引用
  • 采用磁控溅射技术制备了具有永磁特征的Nd-Ce-Fe-B多层纳米复合薄膜,并对其进行了退火处理.通过改变退火温度,研究其对薄膜磁性能和晶体结构的影响.结果表明,随着退火温度的提高薄膜磁性能逐渐增大,但当温度达到695℃以上时,薄膜的磁性能急剧下降.当退火温度为675℃时,薄膜的矫顽力Hci=10.1 kOe(1 Oe=79.5775 A/m),垂直于薄膜表面方向的剩余磁化强度4Mr=5.91 kG(1 G=103/(4)A/m).薄膜的X射线衍射结果表明,磁性薄膜具有较好的c轴取向.通过对薄膜磁化反转过程的研究,发现随着外加磁场的增大,Mrev的极小值向Mirr减小的方向移动,这与畴壁弯曲模型类似,表明在薄膜中存在较强烈的局部钉扎作用,而剩余磁化强度曲线表明这种钉扎作用在薄膜矫顽力机制中并不占支配作用.此外,薄膜的Henkel曲线结果表明在薄膜中存在较强的交换耦合作用,在经过685℃退火的薄膜中磁相互作用更加显著.
    In the early 1980 s, the soft and hard magnetic nano-two-phase permanent magnet materials were developed and exchange coupling model was put forward. Moreover, the theoretical maximum magnetic energy product could reach 120 MGOe (1 Oe=79.5775 A/m). However a great many of experimental research results are always disappointing for theoretical calculation, but previous studies have shown that there exists also a strong exchange coupling in hard magnetic phase, which can improve the magnetic property of magnet. In this paper, nanocomposite Ta(50 nm)/NdFeB(100 nm)/Ta(2 nm)/NdCeFeB(100 nm)/Ta(2 nm)/NdFeB(100 nm)/Ta(40 nm) multilayer films with Ta underlayers and coverlayers are fabricated on Si substrates by direct current sputtering. A 50 nm Ta underlayer and a 40 nm coverlayer are sputtered at room temperature to align the easy axis of the RE2Fe14B grains to the direction perpendicular to the film plane and to prevent the magnetic film from oxidizing, respectively. The 2 nm Ta spacer layer serves as suppressing the diffusion of elements between different magnetic layers. The NdFeB and NdCeFeB magnetic film are deposited at 630℃ and 610℃, respectively, and then they are followed by in situ rapid thermal annealing at 645-705℃ for 30 min. The microstructures and morphologies of the films are characterized by X-ray diffractometry with Cu K radiation, atomic force microscope, and magnetic force microscope. The magnetic properties of the films are measured with vibrating sample magnetometer. The influences of annealing temperature on magnetic property and crystal structure of the film are investigated. The results show that the magnetic property of the film improves gradually with the increase of annealing temperature, but deteriorates sharply when the temperature reaches above 695℃. When the annealing temperature is 675℃, the coercivity Hci of the film reaches 10.1 kOe and the remanence 4Mr is 5.91 kG (1 G=103/(4) A/m), with a magnetic field applied to the direction perpendicular to the plane of the Nd-Ce-Fe-B thin film. The X-ray diffraction results show that the grains of the hard magnetic phase (2:14:1 phase) grow almost along the substrate normal (c-axis direction), of course, with a certain misorientation. Through the magnetization reversal process of the Nd-Ce-Fe-B thin film, it is found that the minimum value of Mrev moves in the direction of decreasing Mirr as the applied magnetic field increases, which is similar to the domain wall bowing model. This indicates that there is a strong local domain wall pinning in the film. Moreover, the remanence curve shows that the pinning type mechanism is indeed not dominant in the magnetization reversal process of the Nd-Ce-Fe-B thin film after annealing at 685℃. In addition, Henkel plots are also investigated in the films at different annealing temperatures. It is believed that nonzero m is due to the interaction between particles in the magnet. It can be stated based on the measuring results that there exists a strong magnetic exchange coupling effect in the Nd-Ce-Fe-B thin film.
      通信作者: 朱明刚, mgzhu@sina.com
    • 基金项目: 国家重点基础研究发展计划(批准号:2014CB643701)和国家自然科学基金(批准号:51571064)资助的课题.
      Corresponding author: Zhu Ming-Gang, mgzhu@sina.com
    • Funds: Project supported by the National Basic Research Program of China (Grant No.2014CB643701) and the National Natural Science Foundation of China (Grant No.51571064).
    [1]

    Sagawa M, Togawa N, Yamamoto H, Matsuura Y 1984 J. Appl. Phys. 55 2083

    [2]

    Sato T, Oka N, Ohsuna T, Kaneko Y, Suzuki S, Shima T 2011 J. Appl. Phys. 110 023903

    [3]

    Wang W J, Guo Z H, Li A H, Li X M, Li W 2006 J. Magn. Magn. Mater. 303 392

    [4]

    Zhu M G, Li W, Gao R W, Han G B, Feng W C 2004 Acta Phys. Sin. 53 3171 (in Chinese) [朱明刚, 李卫, 高汝伟, 韩广兵, 冯维存 2004 物理学报 53 3171]

    [5]

    Dai L C, Jian X L, Zhao Y Y, Yao X X, Zhao Z G 2016 Acta Phys. Sin. 65 234101 (in Chinese) [戴存礼, 骞兴亮, 赵艳艳, 姚雪霞, 赵志刚 2016 物理学报 65 234101]

    [6]

    Akdogan O, Dobrynin A, LeRoy D, Dempsey N M, Givord D 2014 J. Appl. Phys. 115 17A764

    [7]

    Herbst J F 1991 Rev. Mod. Phys. 63 819

    [8]

    Zhu M G, Li W, Wang J D, Zheng L Y, Li Y F, Zhang K, Feng H B, Liu T 2013 IEEE Trans. Magn. 50 1000104

    [9]

    Huang S L, Feng H B, Zhu M G, Li A H, Zhang Y, Li W 2014 AIP Adv. 4 107127

    [10]

    Coehoorn R, de Mooij D B, Duchateau J P W B, Buschow K H J 1988 J. Phys. Colloques 49 C8-669

    [11]

    Skomski R, Coey J M D 1993 Phys. Rev. B 48 15812

    [12]

    Leineweber T, Kronmller H J 1997 Magn. Magn. Mater. 176 145

    [13]

    Liu X H, Yan G, Cui L Y, Zhou S X, Zheng W, Wang A L, Chen J C 1999 IEEE Trans. Magn. 35 3331

    [14]

    Feng W C, Li W, Zhu M G, Han G B, Gao R W 2008 Acta Metall. Sin. 44 8 (in Chinese) [冯维存, 李卫, 朱明刚, 韩广兵, 高汝伟 2008 金属学报 44 8]

    [15]

    Ding J, Street R, McCormick P G 1992 J. Magn. Magn. Mater. 115 211

    [16]

    Hadjipanayis G C, Kim A 1988 J. Appl. Phys. 63 3310

    [17]

    Wohlfarth E P 1958 J. Appl. Phys. 29 595

    [18]

    Cammarano R, McCormick P G, Street R 1996 J. Phys. D 29 2327

    [19]

    Livingston J D 1987 IEEE Trans. Magn. MAG-23 2109

    [20]

    Crew D C, McConrmick P G, Street R 1999 J. Appl. Phys. 86 3278

    [21]

    Henkel O 1964 Phys. Stat. Sol. 7 919

    [22]

    Kelly P E, Grady K O, Mayo P I, Chantrell R W 1989 IEEE Trans. Magn. 25 3881

  • [1]

    Sagawa M, Togawa N, Yamamoto H, Matsuura Y 1984 J. Appl. Phys. 55 2083

    [2]

    Sato T, Oka N, Ohsuna T, Kaneko Y, Suzuki S, Shima T 2011 J. Appl. Phys. 110 023903

    [3]

    Wang W J, Guo Z H, Li A H, Li X M, Li W 2006 J. Magn. Magn. Mater. 303 392

    [4]

    Zhu M G, Li W, Gao R W, Han G B, Feng W C 2004 Acta Phys. Sin. 53 3171 (in Chinese) [朱明刚, 李卫, 高汝伟, 韩广兵, 冯维存 2004 物理学报 53 3171]

    [5]

    Dai L C, Jian X L, Zhao Y Y, Yao X X, Zhao Z G 2016 Acta Phys. Sin. 65 234101 (in Chinese) [戴存礼, 骞兴亮, 赵艳艳, 姚雪霞, 赵志刚 2016 物理学报 65 234101]

    [6]

    Akdogan O, Dobrynin A, LeRoy D, Dempsey N M, Givord D 2014 J. Appl. Phys. 115 17A764

    [7]

    Herbst J F 1991 Rev. Mod. Phys. 63 819

    [8]

    Zhu M G, Li W, Wang J D, Zheng L Y, Li Y F, Zhang K, Feng H B, Liu T 2013 IEEE Trans. Magn. 50 1000104

    [9]

    Huang S L, Feng H B, Zhu M G, Li A H, Zhang Y, Li W 2014 AIP Adv. 4 107127

    [10]

    Coehoorn R, de Mooij D B, Duchateau J P W B, Buschow K H J 1988 J. Phys. Colloques 49 C8-669

    [11]

    Skomski R, Coey J M D 1993 Phys. Rev. B 48 15812

    [12]

    Leineweber T, Kronmller H J 1997 Magn. Magn. Mater. 176 145

    [13]

    Liu X H, Yan G, Cui L Y, Zhou S X, Zheng W, Wang A L, Chen J C 1999 IEEE Trans. Magn. 35 3331

    [14]

    Feng W C, Li W, Zhu M G, Han G B, Gao R W 2008 Acta Metall. Sin. 44 8 (in Chinese) [冯维存, 李卫, 朱明刚, 韩广兵, 高汝伟 2008 金属学报 44 8]

    [15]

    Ding J, Street R, McCormick P G 1992 J. Magn. Magn. Mater. 115 211

    [16]

    Hadjipanayis G C, Kim A 1988 J. Appl. Phys. 63 3310

    [17]

    Wohlfarth E P 1958 J. Appl. Phys. 29 595

    [18]

    Cammarano R, McCormick P G, Street R 1996 J. Phys. D 29 2327

    [19]

    Livingston J D 1987 IEEE Trans. Magn. MAG-23 2109

    [20]

    Crew D C, McConrmick P G, Street R 1999 J. Appl. Phys. 86 3278

    [21]

    Henkel O 1964 Phys. Stat. Sol. 7 919

    [22]

    Kelly P E, Grady K O, Mayo P I, Chantrell R W 1989 IEEE Trans. Magn. 25 3881

  • [1] 何永周, 王杰. 低温波荡器定向织构Dy薄片的磁性能研究. 物理学报, 2022, (): . doi: 10.7498/aps.71.20210952
    [2] 何永周, 王杰. 低温波荡器定向织构Dy薄片的磁性能. 物理学报, 2021, 70(24): 247502. doi: 10.7498/aps.70.20210952
    [3] 曹永泽, 王强, 李国建, 马永会, 隋旭东, 赫冀成. 强磁场对不同厚度Fe-Ni纳米多晶薄膜的生长过程及磁性能的影响. 物理学报, 2015, 64(6): 067502. doi: 10.7498/aps.64.067502
    [4] 郑勇林, 卢孟春, 郭红霞, 包秀丽. 磁性金属材料中交换耦合作用和自旋波的研究. 物理学报, 2015, 64(17): 177501. doi: 10.7498/aps.64.177501
    [5] 黄有林, 侯育花, 赵宇军, 刘仲武, 曾德长, 马胜灿. 应变对钴铁氧体电子结构和磁性能影响的第一性原理研究. 物理学报, 2013, 62(16): 167502. doi: 10.7498/aps.62.167502
    [6] 曹永泽, 李国建, 王强, 马永会, 王慧敏, 赫冀成. 强磁场对不同厚度Fe80Ni20薄膜的微观结构及磁性能的影响. 物理学报, 2013, 62(22): 227501. doi: 10.7498/aps.62.227501
    [7] 魏杰, 陈彦均, 徐卓. 多铁性BiFeO3纳米颗粒的尺寸依赖磁性能研究. 物理学报, 2012, 61(5): 057502. doi: 10.7498/aps.61.057502
    [8] 赵荣, 顾建军, 刘力虎, 徐芹, 蔡宁, 孙会元. FeCo二元合金纳米线阵列的磁化反转. 物理学报, 2012, 61(2): 027504. doi: 10.7498/aps.61.027504
    [9] 侯志鹏, 张金宝, 徐世峰, 吴春姬, 王子涵, 杨坤隆, 王文全, 杜晓波, 苏峰. B元素添加对Co-Zr-Mo合金薄带的磁性能及结构的影响. 物理学报, 2012, 61(20): 207501. doi: 10.7498/aps.61.207501
    [10] 易勇, 丁志杰, 李恺, 唐永建, 罗江山. Ni4NdB电子结构和磁性能第一性原理研究. 物理学报, 2011, 60(9): 097503. doi: 10.7498/aps.60.097503
    [11] 易勇, 李恺, 丁志杰, 易早, 罗江山, 唐永建. Ni4PrB的电子结构和磁性能研究. 物理学报, 2011, 60(10): 107502. doi: 10.7498/aps.60.107502
    [12] 杨静, 王治, 贾芸芸, 韩叶梅. FeCo基纳米晶合金高温交换耦合作用机理. 物理学报, 2010, 59(11): 8148-8154. doi: 10.7498/aps.59.8148
    [13] 刘涛, 李卫. 时效工艺对PtCo合金磁性能的影响. 物理学报, 2009, 58(8): 5773-5777. doi: 10.7498/aps.58.5773
    [14] 刘涛, 郭朝晖, 李岫梅, 李卫. 微观组织结构对铂钴永磁合金磁性能的影响. 物理学报, 2009, 58(3): 2030-2034. doi: 10.7498/aps.58.2030
    [15] 张 然, 刘 颖, 高升吉, 谢 治, 涂铭旌. 添加Dy在快淬NdFeB永磁体中的作用. 物理学报, 2008, 57(1): 526-530. doi: 10.7498/aps.57.526
    [16] 李 健, 宋功保, 王美丽, 张宝述. Ti1-xCrxO2±δ体系的相关系、晶体结构和磁性能研究. 物理学报, 2007, 56(6): 3379-3387. doi: 10.7498/aps.56.3379
    [17] 展晓元, 张 跃, 齐俊杰, 顾有松, 郑小兰. FePt薄膜中磁相互作用. 物理学报, 2007, 56(3): 1725-1729. doi: 10.7498/aps.56.1725
    [18] 张 然, 刘 颖, 李 军, 马毅龙, 高升吉, 涂铭旌. 添加Nb在快淬NdFeB永磁体中的作用研究. 物理学报, 2007, 56(1): 518-521. doi: 10.7498/aps.56.518
    [19] 陈允忠, 贺淑莉, 张宏伟, 陈仁杰, 荣传兵, 孙继荣, 沈保根. 纳米复合永磁Pr9Fe74Co12B5Snx(x=0, 0.5)的磁化行为与磁黏滞性. 物理学报, 2005, 54(12): 5890-5894. doi: 10.7498/aps.54.5890
    [20] 陈仁杰, 荣传兵, 张宏伟, 贺淑莉, 张绍英, 沈保根. Sm(Co,Cu,Fe,Zr)z反磁化过程的微磁学分析. 物理学报, 2004, 53(12): 4341-4346. doi: 10.7498/aps.53.4341
计量
  • 文章访问数:  5483
  • PDF下载量:  199
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-22
  • 修回日期:  2017-05-02
  • 刊出日期:  2017-08-05

/

返回文章
返回