搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非晶态合金与氢相互作用的研究进展

林怀俊 朱云峰 刘雅娜 李李泉 朱敏

引用本文:
Citation:

非晶态合金与氢相互作用的研究进展

林怀俊, 朱云峰, 刘雅娜, 李李泉, 朱敏

Research progress of interactions between amorphous alloys and hydrogen

Lin Huai-Jun, Zhu Yun-Feng, Liu Ya-Na, Li Li-Quan, Zhu Min
PDF
导出引用
  • 非晶态合金在力学性能、耐磨耐蚀性、磁性等方面比传统晶态合金具有显著优势,是一类有优良应用前景的新型结构与功能材料.非晶态合金与氢相互作用可以产生很多有趣的物理化学现象和应用.本文从物理基础和材料应用两个方面评述非晶态合金和氢相互作用的研究进展,在物理基础研究方面,从氢在非晶态合金中的存在状态出发,讨论氢在非晶态合金中的溶解、分布、占位和扩散等相关物理问题,进而分析氢对非晶态合金的热稳定性、磁性、内耗、氢脆等的影响.在材料应用研究方面,对非晶态储氢合金、非晶态合金氢功能膜、吸氢改善非晶态合金的塑性和玻璃形成能力、氢致非晶化、利用非晶态合金制备纳米储氢材料等方面的研究进展进行评述.最后总结并展望有关非晶态合金与氢相互作用的研究和应用.
    Amorphous alloys are a group of novel mechanical and functional materials that possess remarkably improved properties, such as mechanical property, wear property, anti-corrosion property, magnetic property and catalytic property, compared with those of their crystalline counterparts. The interactions between amorphous alloys and hydrogen can lead to various interesting physical and chemical phenomena, and also important applications. Typically, some amorphous alloys can store more hydrogen with faster kinetics than their crystalline counterparts due to the disordered atomic structures, which make them promising candidates for hydrogen storage. Hydrogen induced optical transformation in amorphous alloy film with thickness on a nanoscale makes them suitable for developing optical switchable windows. Hydrogen could be used as a sensitive probe to study the atomic structures of amorphous alloys. Amorphous alloys, whose structures are similar to defects in crystalline alloys (vacancies, dislocations, boundaries, ect.), are a group of suitable objects to study the interactions between hydrogen and defects. Amorphous alloys are also promising membranes materials for industrial hydrogen gas purification. Micro-alloying by hydrogenation could enhance the plasticity and glass-forming ability of amorphous alloy.In this review, recent research progress of interactions between amorphous alloys and hydrogen are summarized from two main aspects: fundamental research and practical applications. In the aspect of fundamental research, we firstly review the recent study on hydrogen in the amorphous alloy, including the hydrogen concentration and distribution, hydrogen occupancy type and geometric size, hydrogen diffusion and thermodynamics and other relevant physical and chemical issues. Secondly, the studies on the effects of hydrogenation on thermal stability, magnetic property and internal friction of amorphous alloys, together with some discussion on the corresponding mechanisms are summarized. Thirdly, hydrogen embrittlement of amorphous alloy and the corresponding prevention techniques, together with the studies of the interactions between hydrogen and defects in crystalline materials such as vacancies, dislocations and boundaries in material, are also involved. In the aspect of practical applications, we firstly review recent advances in amorphous hydrogen storage alloys, focusing on transition metal based amorphous alloys and Mg based alloys. Secondly, amorphous alloy films for hydrogen purification, hydrogen sensors and optical switchable windows are reviewed. Thirdly, some positive influences introduced by hydrogenation on amorphous alloys are discussed, typically on enhancing plasticity and glass-forming ability. Besides the above, hydrogen induced amorphization on crystalline alloy, the use of amorphous alloy for preparing nanocrystalline hydrogen storage materials, and using hydrogenation to crack bulk amorphous alloys to produce amorphous alloys powders are also discussed. In the last section of this review, we try to give our own viewpoint of the future perspectives of relevant researches and applications of interactions between hydrogen and amorphous alloys.
    [1]

    Klement W, Willens R H, Duwez P L 1960 Nature 187 869

    [2]

    Inoue A, Takeuchi A 2011 Acta Mater. 59 2243

    [3]

    Wang W H 2011 Physics 40 701 (in Chinese) [汪卫华 2011 物理 40 701]

    [4]

    Wang W H, Dong C, Shek C H 2004 Mater. Sci. Engineer. R: Reports 44 45

    [5]

    Li Z, Bai H Y, Zhao D Q, Pan M X, Wang W L, Wang W H 2005 Acta Phys. Sin. 54 652 (in Chinese) [李正, 白海洋, 赵德乾, 潘明祥, 王万录, 汪卫华 2005 物理学报 54 652]

    [6]

    Wang W H 2013 Prog. Phys. 33 177 (in Chinese) [汪卫华 2013 物理学进展 33 177]

    [7]

    Kirchheim R, Sommer F, Schluckebier G 1982 Acta Metall. 30 1059

    [8]

    Kirchheim R 1988 Prog. Mater. Sci. 32 261

    [9]

    Dong F Y, Luo L S, Su Y Q, Guo J J, Fu H Z 2013 Rare Metal Mater. Engineer. 42 1536 (in Chinese) [董福宇, 骆良顺, 苏彦庆, 郭景杰, 傅恒志 2013 稀有金属材料与工程 42 1536]

    [10]

    Eliaz N, Eliezer D 1999 Adv. Perform. Mater. 6 5

    [11]

    Rush J J, Rowe J M, Maeland A J 1980 J. Phys. F: Metal Phys. 10 L283

    [12]

    Spit F H M, Drijver J W, Radelaar S 1980 Scripta Metall. 14 1071

    [13]

    Turnbull D, Cohen M H 1961 J. Chem. Phys. 34 120

    [14]

    Lin H J, He M, Pan S P, Gu L, Li H W, Wang H, Ouyang L Z, Liu J W, Ge T P, Wang D P, Wang W H, Akiba E, Zhu M 2016 Acta Mater. 120 68

    [15]

    Yamaura S, Sakurai M, Hasegawa M, Wakoh K, Shimpo Y, Nishida M, Kimura H, Matsubara E, Inoue A 2005 Acta Mater. 53 3703

    [16]

    Dolan M D, Dave N C, Ilyushechkin A Y, Morpeth L D, McLennan K G 2006 J. Membrane Sci. 285 30

    [17]

    Hara S, Sakaki K, Itoh N, Kimura H M, Asami K, Inoue A 2000 J. Membrane Sci. 164 289

    [18]

    Ding H Y, Yao K F 2014 Rare Metal Mater. Engineer. 43 1787 (in Chinese) [丁红瑜, 姚可夫 2014 稀有金属材料与工程 43 1787]

    [19]

    Richardson T J, Slack J L, Armitage R D, Kostecki R, Farangis B, Rubin M D 2001 Appl. Phys. Lett. 78 3047

    [20]

    Chaudhari P, Cuomo J J, Gambino R J 1973 Appl. Phys. Lett. 22 337

    [21]

    Victoria M, Westerwaal R J, Dam B, van Mechelen J L M 2016 ACS Sensors 1 222

    [22]

    Zhao Q, Li Y, Song Y, Cui X, Sun D, Fang F 2013 Appl. Phys. Lett. 102 161901

    [23]

    Dong F, Lu S, Zhang Y, Luo L, Su Y, Wang B, Huang H, Xiang Q, Yuan X, Zuo X 2017 J. Alloy Compud. 695 3183

    [24]

    Dong F, Su Y, Luo L, Wang L, Wang S, Guo J, Fu H 2012 Int. J. Hydrogen Energy 37 14697

    [25]

    Granata D, Fischer E, Löffler J F 2015 Acta Mater. 99 415

    [26]

    Su Y, Dong F, Luo L, Guo J, Han B, Li Z, Wang B, Fu H 2012 J. Non-Cryst. Solids 358 2606

    [27]

    Huot J, Ravnsbæk D B, Zhang J, Cuevas F, Latroche M, Jensen T R 2013 Prog. Mater. Sci. 58 30

    [28]

    Harris J H, Curtin W A, Tenhover M A 1987 Phys. Rev. B 36 5784

    [29]

    Fries S M, Wagner H G, Campbell S J, Gonser U, Blaes N, Steiner P 1985 J. Phys. F: Metal Phys. 15 1179

    [30]

    Itoh K, Kanda K, Aoki K, Fukunaga T 2003 J. Alloy Compud. 348 167

    [31]

    Fukunaga T, Itoh K, Orimo S, Aoki K 2004 Mater. Sci. Engineer. B 108 105

    [32]

    Völkl J, Alefeld G 1978 Hydrogen in Metals I: Basic Properties (Berlin & New York: Springer-verlag) p321

    [33]

    Eliaz N, Fuks D, Eliezer D 1999 Acta Mater. 47 2981

    [34]

    Lee Y S, Stevenson D A 1985 J. Non-Cryst. Solids 72 249

    [35]

    Kirchheim R 1982 Acta Metall. 30 1069

    [36]

    Knapton A 1977 Platinum Metals Rev. 21 44

    [37]

    Spassov T, Stergioudis G, Ivanov G, Polychroniadis E 1998 Zeitschrift fr Metallkunde 89 23

    [38]

    Huett V, Zander D, Jastrow L, Majzoub E, Kelton K, Köster U 2004 J. Alloy Compud. 379 16

    [39]

    Bowman R Jr, Furlan R, Cantrell J, Maeland A 1984 J. Appl. Phys. 56 3362

    [40]

    Yamaura S, Isogai K, Kimura H, Inoue A 2002 J. Mater. Res. 17 60

    [41]

    Isogai K, Shoji T, Kimura H, Inoue A 2000 Mater. Trans. JIM 41 1486

    [42]

    Peng D, Yan M, Sun J, Shen J, Chen Y, McCartney D 2005 J. Alloy Compud. 400 197

    [43]

    Rangelova V, Spassov T, Neykov N 2004 J. Thermal Analy Calorim. 75 373

    [44]

    Lazarova M, Spassov T, Budurov S 1994 Int. J. Rapid Solidificat. 8 133

    [45]

    Li X G, Otahara T, Takahashi S, Shoji T, Kimura H M, Inoue A 2000 J. Alloy Compud. 297 303

    [46]

    Stolz U, Weller M, Kirchheim R 1986 Scripta Metall. 20 1361

    [47]

    Knzi H U, Agyeman K, Gntherodt H J 1979 Solid State Commun. 32 711

    [48]

    Hasegawa M Takeuchi M, Inoue A 2005 Acta Mater. 53 5297

    [49]

    Hasegawa M, Takeuchi M, Kato H, Inoue A 2004 Acta Mater. 52 1799

    [50]

    Coey J M D, Ryan D, Gignoux D, Liénard A, Rebouillat J P 1982 J. Appl. Phys. 53 7804

    [51]

    Coey J, Ryan D, Boliang Y 1984 J. Appl. Phys. 55 1800

    [52]

    Ryan D H, Coey J M D, Batalla E, Altounian Z, Ström-Olsen J O 1987 Phys. Rev. B 35 8630

    [53]

    Aoki K, Nagano M, Yanagitani A, Masumoto T 1987 J. Appl. Phys. 62 3314

    [54]

    Nagumo M 2016 Characteristic Features of Deformation and Fracture in Hydrogen Embrittlement, in: Fundamentals of Hydrogen Embrittlement pp137-165

    [55]

    Nagumo M, Takahashi T 1976 Mater. Sci. Engineer. 23 257

    [56]

    Jayalakshmi S, Fleury E 2010 J. ASTM International 7 1

    [57]

    He T, Pachfule P, Wu H, Xu Q, Chen P 2016 Nat. Rev. Mater. 1 16059

    [58]

    Sandrock G 1999 J. Alloy Compud. 293-295 877

    [59]

    Buschow K H, van Mal H H 1972 J. Less-Common Metals 29 203

    [60]

    Reilly J J, Johnson J R, Reidinger F, Lynch J F, Tanaka J, Wiswall R H 1980 J. Less-Common Metals 73 175

    [61]

    Maeland A J, Tanner L E, Libowitz G 1980 J. Less-Common Metals 74 279

    [62]

    Aoki K, Masumoto T, Kamachi M 1985 J. Less Common Metals 113 33

    [63]

    Bowman R C Jr 1988 Mater. Sci. Forum. 31 197

    [64]

    Ciureanu M, Ryan D H, Ström-Olsen J O, Trudeau M L 1993 J. Electrochem. Soc. 140 579

    [65]

    Wang H, Lin H J, Cai W T, Ouyang L Z, Zhu M 2016 J. Alloy Compud. 658 280

    [66]

    Inoue A, Masumoto T 1993 Mater. Sci. Engineer. A 173 1

    [67]

    Spassov T, Lyubenova L, Köster U, BaróM D 2004 Mater. Sci. Engineer. A 375-377 794

    [68]

    Spassov T, Köster U 1999 J. Alloy Compud. 287 243

    [69]

    Tanaka K, Kanda Y, Furuhashi M, Saito K, Kuroda K, Saka H 1999 J. Alloy Compud. 293-295 521

    [70]

    Wu D C, Huang L J, Liang G Y 2008 Acta Phys. Sin. 57 1813 (in Chinese) [吴东昌, 黄林军, 梁工英 2008 物理学报 57 1813]

    [71]

    Lei Y, Wu Y, Yang Q, Wu J, Wang Q 1994 Zeitschrift fr Physikalische Chemie 183 379

    [72]

    Liu W, Wu H, Lei Y, Wang Q, Wu J 1997 J. Alloy Compud. 252 234

    [73]

    Huang L, Wang Y, Tang J, Zhao Y, Liu G, Wang Y, Liu J, Jiao J, Wang W, Jin B, Belfiore L A, Kipper M J 2017 J. Alloy Compud. 694 1140

    [74]

    Lin H J, Wang W H, Zhu M 2012 J. Non-Cryst. Solids 358 1387

    [75]

    Griessen R 1983 Phys. Rev. B 27 7575

    [76]

    Fadonougbo J O, Suh J Y, Han S, Shim C H, Kim G H, Kim M H, Fleury E, Cho Y W 2016 J. Alloy Compud. 660 456

    [77]

    Shao H, Asano K, Enoki H, Akiba E 2009 Scripta Mater. 60 818

    [78]

    El-Eskandarany M S, Aoki K, Sumiyama K, Suzuki K 1997 Scripta Mater. 36 1001

    [79]

    Jiang P, Yu Y D 2013 Rare Metal Mater. Engineer. 42 868 (in Chinese) [江鹏, 于彦东 2013 稀有金属材料与工程 42 868]

    [80]

    Paglieri S N, Pal N K, Dolan M D, Kim S M, Chien W M, Lamb J, Chandra D, Hubbard K M, Moore D P 2011 J. Membrane Sci. 378 42

    [81]

    Dolan M, Dave N, Morpeth L, Donelson R, Liang D, Kellam M, Song S 2009 J. Membrane Sci. 326 549

    [82]

    Kim K B, Kim K D, Lee D Y, Kim Y C, Fleury E, Kim D H 2007 Mater. Sci. Engineer. A 449-451 934

    [83]

    Yamaura S, Inoue A 2010 J. Membrane Sci. 349 138

    [84]

    Yamaura S, Nakata S, Kimura H, Inoue A 2007 J. Membrane Sci. 291 126

    [85]

    Jayalakshmi S, Choi Y G, Kim Y C, Kim Y B, Fleury E 2010 Intermetallics 18 1988

    [86]

    Brinkman K, Fox E, Korinko P, Missimer D, Adams T, Su D 2011 J. Membrane Sci. 378 301

    [87]

    Ockwig N W, Nenoff T M 2007 Chem. Rev. 107 4078

    [88]

    Serra E, Kemali M, Perujo A, Ross D K 1998 Metall. Mater. Trans. A 29 1023

    [89]

    Nakano S, Yamaura S, Uchinashi S, Kimura H, Inoue A 2005 Sensors and Actuators B: Chemical 104 75

    [90]

    Zhao Y, Choi I C, Seok M Y, Kim M H, Kim D H, Ramamurty U, Suh J Y, Jang J 2014 Acta Mater. 78 213

    [91]

    Granata D, Fischer E, Löffler J F 2015 Scripta Mater. 103 53

    [92]

    Mahjoub R, Laws K J, Hamilton N E, Granata D, Ferry M 2016 Computat. Mater. Sci. 125 197

    [93]

    Yeh X L, Samwer K, Johnson W L 1983 Appl. Phys. Lett. 42 242

    [94]

    Aoki K, Yamamoto T, Masumoto T 1987 Scripta Metall. 21 27

    [95]

    Aoki K, Yanagitani A, Li X G, Masumoto T 1988 Mater. Sci. Engineer. 97 35

    [96]

    Aoki K, Li X G, Masumoto T 1992 Acta Metall. Mater. 40 1717

    [97]

    Aoki K, Masumoto T 1995 J. Alloy Compud. 231 20

    [98]

    Zhang Q A, Yang D Q 2017 J. Alloy Compud. 711 312

    [99]

    Wu Y, Solberg J K, Yartys V A 2007 J. Alloy Compud. 446-447 178

    [100]

    Lin H J, Ouyang L Z, Wang H, Zhao D Q, Wang W H, Sun D L, Zhu M 2012 International J. Hydrogen Energy 37 14329

    [101]

    Lin H J, Zhang C, Wang H, Ouyang L, Zhu Y, Li L, Wang W, Zhu M 2016 J. Alloy Compud. 685 272

    [102]

    Lin H J, Tang J J, Yu Q, Wang H, Ouyang L Z, Zhao Y J, Liu J W, Wang W H, Zhu M 2014 Nano Energy 9 80

    [103]

    Maeland A J, Libowitz G G 1982 Mater. Lett. 1 3

  • [1]

    Klement W, Willens R H, Duwez P L 1960 Nature 187 869

    [2]

    Inoue A, Takeuchi A 2011 Acta Mater. 59 2243

    [3]

    Wang W H 2011 Physics 40 701 (in Chinese) [汪卫华 2011 物理 40 701]

    [4]

    Wang W H, Dong C, Shek C H 2004 Mater. Sci. Engineer. R: Reports 44 45

    [5]

    Li Z, Bai H Y, Zhao D Q, Pan M X, Wang W L, Wang W H 2005 Acta Phys. Sin. 54 652 (in Chinese) [李正, 白海洋, 赵德乾, 潘明祥, 王万录, 汪卫华 2005 物理学报 54 652]

    [6]

    Wang W H 2013 Prog. Phys. 33 177 (in Chinese) [汪卫华 2013 物理学进展 33 177]

    [7]

    Kirchheim R, Sommer F, Schluckebier G 1982 Acta Metall. 30 1059

    [8]

    Kirchheim R 1988 Prog. Mater. Sci. 32 261

    [9]

    Dong F Y, Luo L S, Su Y Q, Guo J J, Fu H Z 2013 Rare Metal Mater. Engineer. 42 1536 (in Chinese) [董福宇, 骆良顺, 苏彦庆, 郭景杰, 傅恒志 2013 稀有金属材料与工程 42 1536]

    [10]

    Eliaz N, Eliezer D 1999 Adv. Perform. Mater. 6 5

    [11]

    Rush J J, Rowe J M, Maeland A J 1980 J. Phys. F: Metal Phys. 10 L283

    [12]

    Spit F H M, Drijver J W, Radelaar S 1980 Scripta Metall. 14 1071

    [13]

    Turnbull D, Cohen M H 1961 J. Chem. Phys. 34 120

    [14]

    Lin H J, He M, Pan S P, Gu L, Li H W, Wang H, Ouyang L Z, Liu J W, Ge T P, Wang D P, Wang W H, Akiba E, Zhu M 2016 Acta Mater. 120 68

    [15]

    Yamaura S, Sakurai M, Hasegawa M, Wakoh K, Shimpo Y, Nishida M, Kimura H, Matsubara E, Inoue A 2005 Acta Mater. 53 3703

    [16]

    Dolan M D, Dave N C, Ilyushechkin A Y, Morpeth L D, McLennan K G 2006 J. Membrane Sci. 285 30

    [17]

    Hara S, Sakaki K, Itoh N, Kimura H M, Asami K, Inoue A 2000 J. Membrane Sci. 164 289

    [18]

    Ding H Y, Yao K F 2014 Rare Metal Mater. Engineer. 43 1787 (in Chinese) [丁红瑜, 姚可夫 2014 稀有金属材料与工程 43 1787]

    [19]

    Richardson T J, Slack J L, Armitage R D, Kostecki R, Farangis B, Rubin M D 2001 Appl. Phys. Lett. 78 3047

    [20]

    Chaudhari P, Cuomo J J, Gambino R J 1973 Appl. Phys. Lett. 22 337

    [21]

    Victoria M, Westerwaal R J, Dam B, van Mechelen J L M 2016 ACS Sensors 1 222

    [22]

    Zhao Q, Li Y, Song Y, Cui X, Sun D, Fang F 2013 Appl. Phys. Lett. 102 161901

    [23]

    Dong F, Lu S, Zhang Y, Luo L, Su Y, Wang B, Huang H, Xiang Q, Yuan X, Zuo X 2017 J. Alloy Compud. 695 3183

    [24]

    Dong F, Su Y, Luo L, Wang L, Wang S, Guo J, Fu H 2012 Int. J. Hydrogen Energy 37 14697

    [25]

    Granata D, Fischer E, Löffler J F 2015 Acta Mater. 99 415

    [26]

    Su Y, Dong F, Luo L, Guo J, Han B, Li Z, Wang B, Fu H 2012 J. Non-Cryst. Solids 358 2606

    [27]

    Huot J, Ravnsbæk D B, Zhang J, Cuevas F, Latroche M, Jensen T R 2013 Prog. Mater. Sci. 58 30

    [28]

    Harris J H, Curtin W A, Tenhover M A 1987 Phys. Rev. B 36 5784

    [29]

    Fries S M, Wagner H G, Campbell S J, Gonser U, Blaes N, Steiner P 1985 J. Phys. F: Metal Phys. 15 1179

    [30]

    Itoh K, Kanda K, Aoki K, Fukunaga T 2003 J. Alloy Compud. 348 167

    [31]

    Fukunaga T, Itoh K, Orimo S, Aoki K 2004 Mater. Sci. Engineer. B 108 105

    [32]

    Völkl J, Alefeld G 1978 Hydrogen in Metals I: Basic Properties (Berlin & New York: Springer-verlag) p321

    [33]

    Eliaz N, Fuks D, Eliezer D 1999 Acta Mater. 47 2981

    [34]

    Lee Y S, Stevenson D A 1985 J. Non-Cryst. Solids 72 249

    [35]

    Kirchheim R 1982 Acta Metall. 30 1069

    [36]

    Knapton A 1977 Platinum Metals Rev. 21 44

    [37]

    Spassov T, Stergioudis G, Ivanov G, Polychroniadis E 1998 Zeitschrift fr Metallkunde 89 23

    [38]

    Huett V, Zander D, Jastrow L, Majzoub E, Kelton K, Köster U 2004 J. Alloy Compud. 379 16

    [39]

    Bowman R Jr, Furlan R, Cantrell J, Maeland A 1984 J. Appl. Phys. 56 3362

    [40]

    Yamaura S, Isogai K, Kimura H, Inoue A 2002 J. Mater. Res. 17 60

    [41]

    Isogai K, Shoji T, Kimura H, Inoue A 2000 Mater. Trans. JIM 41 1486

    [42]

    Peng D, Yan M, Sun J, Shen J, Chen Y, McCartney D 2005 J. Alloy Compud. 400 197

    [43]

    Rangelova V, Spassov T, Neykov N 2004 J. Thermal Analy Calorim. 75 373

    [44]

    Lazarova M, Spassov T, Budurov S 1994 Int. J. Rapid Solidificat. 8 133

    [45]

    Li X G, Otahara T, Takahashi S, Shoji T, Kimura H M, Inoue A 2000 J. Alloy Compud. 297 303

    [46]

    Stolz U, Weller M, Kirchheim R 1986 Scripta Metall. 20 1361

    [47]

    Knzi H U, Agyeman K, Gntherodt H J 1979 Solid State Commun. 32 711

    [48]

    Hasegawa M Takeuchi M, Inoue A 2005 Acta Mater. 53 5297

    [49]

    Hasegawa M, Takeuchi M, Kato H, Inoue A 2004 Acta Mater. 52 1799

    [50]

    Coey J M D, Ryan D, Gignoux D, Liénard A, Rebouillat J P 1982 J. Appl. Phys. 53 7804

    [51]

    Coey J, Ryan D, Boliang Y 1984 J. Appl. Phys. 55 1800

    [52]

    Ryan D H, Coey J M D, Batalla E, Altounian Z, Ström-Olsen J O 1987 Phys. Rev. B 35 8630

    [53]

    Aoki K, Nagano M, Yanagitani A, Masumoto T 1987 J. Appl. Phys. 62 3314

    [54]

    Nagumo M 2016 Characteristic Features of Deformation and Fracture in Hydrogen Embrittlement, in: Fundamentals of Hydrogen Embrittlement pp137-165

    [55]

    Nagumo M, Takahashi T 1976 Mater. Sci. Engineer. 23 257

    [56]

    Jayalakshmi S, Fleury E 2010 J. ASTM International 7 1

    [57]

    He T, Pachfule P, Wu H, Xu Q, Chen P 2016 Nat. Rev. Mater. 1 16059

    [58]

    Sandrock G 1999 J. Alloy Compud. 293-295 877

    [59]

    Buschow K H, van Mal H H 1972 J. Less-Common Metals 29 203

    [60]

    Reilly J J, Johnson J R, Reidinger F, Lynch J F, Tanaka J, Wiswall R H 1980 J. Less-Common Metals 73 175

    [61]

    Maeland A J, Tanner L E, Libowitz G 1980 J. Less-Common Metals 74 279

    [62]

    Aoki K, Masumoto T, Kamachi M 1985 J. Less Common Metals 113 33

    [63]

    Bowman R C Jr 1988 Mater. Sci. Forum. 31 197

    [64]

    Ciureanu M, Ryan D H, Ström-Olsen J O, Trudeau M L 1993 J. Electrochem. Soc. 140 579

    [65]

    Wang H, Lin H J, Cai W T, Ouyang L Z, Zhu M 2016 J. Alloy Compud. 658 280

    [66]

    Inoue A, Masumoto T 1993 Mater. Sci. Engineer. A 173 1

    [67]

    Spassov T, Lyubenova L, Köster U, BaróM D 2004 Mater. Sci. Engineer. A 375-377 794

    [68]

    Spassov T, Köster U 1999 J. Alloy Compud. 287 243

    [69]

    Tanaka K, Kanda Y, Furuhashi M, Saito K, Kuroda K, Saka H 1999 J. Alloy Compud. 293-295 521

    [70]

    Wu D C, Huang L J, Liang G Y 2008 Acta Phys. Sin. 57 1813 (in Chinese) [吴东昌, 黄林军, 梁工英 2008 物理学报 57 1813]

    [71]

    Lei Y, Wu Y, Yang Q, Wu J, Wang Q 1994 Zeitschrift fr Physikalische Chemie 183 379

    [72]

    Liu W, Wu H, Lei Y, Wang Q, Wu J 1997 J. Alloy Compud. 252 234

    [73]

    Huang L, Wang Y, Tang J, Zhao Y, Liu G, Wang Y, Liu J, Jiao J, Wang W, Jin B, Belfiore L A, Kipper M J 2017 J. Alloy Compud. 694 1140

    [74]

    Lin H J, Wang W H, Zhu M 2012 J. Non-Cryst. Solids 358 1387

    [75]

    Griessen R 1983 Phys. Rev. B 27 7575

    [76]

    Fadonougbo J O, Suh J Y, Han S, Shim C H, Kim G H, Kim M H, Fleury E, Cho Y W 2016 J. Alloy Compud. 660 456

    [77]

    Shao H, Asano K, Enoki H, Akiba E 2009 Scripta Mater. 60 818

    [78]

    El-Eskandarany M S, Aoki K, Sumiyama K, Suzuki K 1997 Scripta Mater. 36 1001

    [79]

    Jiang P, Yu Y D 2013 Rare Metal Mater. Engineer. 42 868 (in Chinese) [江鹏, 于彦东 2013 稀有金属材料与工程 42 868]

    [80]

    Paglieri S N, Pal N K, Dolan M D, Kim S M, Chien W M, Lamb J, Chandra D, Hubbard K M, Moore D P 2011 J. Membrane Sci. 378 42

    [81]

    Dolan M, Dave N, Morpeth L, Donelson R, Liang D, Kellam M, Song S 2009 J. Membrane Sci. 326 549

    [82]

    Kim K B, Kim K D, Lee D Y, Kim Y C, Fleury E, Kim D H 2007 Mater. Sci. Engineer. A 449-451 934

    [83]

    Yamaura S, Inoue A 2010 J. Membrane Sci. 349 138

    [84]

    Yamaura S, Nakata S, Kimura H, Inoue A 2007 J. Membrane Sci. 291 126

    [85]

    Jayalakshmi S, Choi Y G, Kim Y C, Kim Y B, Fleury E 2010 Intermetallics 18 1988

    [86]

    Brinkman K, Fox E, Korinko P, Missimer D, Adams T, Su D 2011 J. Membrane Sci. 378 301

    [87]

    Ockwig N W, Nenoff T M 2007 Chem. Rev. 107 4078

    [88]

    Serra E, Kemali M, Perujo A, Ross D K 1998 Metall. Mater. Trans. A 29 1023

    [89]

    Nakano S, Yamaura S, Uchinashi S, Kimura H, Inoue A 2005 Sensors and Actuators B: Chemical 104 75

    [90]

    Zhao Y, Choi I C, Seok M Y, Kim M H, Kim D H, Ramamurty U, Suh J Y, Jang J 2014 Acta Mater. 78 213

    [91]

    Granata D, Fischer E, Löffler J F 2015 Scripta Mater. 103 53

    [92]

    Mahjoub R, Laws K J, Hamilton N E, Granata D, Ferry M 2016 Computat. Mater. Sci. 125 197

    [93]

    Yeh X L, Samwer K, Johnson W L 1983 Appl. Phys. Lett. 42 242

    [94]

    Aoki K, Yamamoto T, Masumoto T 1987 Scripta Metall. 21 27

    [95]

    Aoki K, Yanagitani A, Li X G, Masumoto T 1988 Mater. Sci. Engineer. 97 35

    [96]

    Aoki K, Li X G, Masumoto T 1992 Acta Metall. Mater. 40 1717

    [97]

    Aoki K, Masumoto T 1995 J. Alloy Compud. 231 20

    [98]

    Zhang Q A, Yang D Q 2017 J. Alloy Compud. 711 312

    [99]

    Wu Y, Solberg J K, Yartys V A 2007 J. Alloy Compud. 446-447 178

    [100]

    Lin H J, Ouyang L Z, Wang H, Zhao D Q, Wang W H, Sun D L, Zhu M 2012 International J. Hydrogen Energy 37 14329

    [101]

    Lin H J, Zhang C, Wang H, Ouyang L, Zhu Y, Li L, Wang W, Zhu M 2016 J. Alloy Compud. 685 272

    [102]

    Lin H J, Tang J J, Yu Q, Wang H, Ouyang L Z, Zhao Y J, Liu J W, Wang W H, Zhu M 2014 Nano Energy 9 80

    [103]

    Maeland A J, Libowitz G G 1982 Mater. Lett. 1 3

  • [1] 彭嘉欣, 唐本镇, 陈棋鑫, 李冬梅, 郭小龙, 夏雷, 余鹏. 非晶态Gd45Ni30Al15Co10合金的制备与磁热性能. 物理学报, 2022, 71(2): 026102. doi: 10.7498/aps.70.20211530
    [2] 马丽娟, 韩婷, 高升启, 贾建峰, 武海顺. 单缺陷对Sc, Ti, V修饰石墨烯的结构及储氢性能的影响. 物理学报, 2021, 70(21): 218802. doi: 10.7498/aps.70.20210727
    [3] 元丽华, 巩纪军, 王道斌, 张材荣, 张梅玲, 苏俊燕, 康龙. 碱金属修饰的多孔石墨烯的储氢性能. 物理学报, 2020, 69(6): 068802. doi: 10.7498/aps.69.20190694
    [4] 周晓锋, 方浩宇, 唐春梅. 三明治结构graphene-2Li-graphene的储氢性能. 物理学报, 2019, 68(5): 053601. doi: 10.7498/aps.68.20181497
    [5] 尹跃洪, 徐红萍. 电场诱导(MgO)4储氢的理论研究. 物理学报, 2019, 68(16): 163601. doi: 10.7498/aps.68.20190544
    [6] 尹跃洪, 陈宏善, 宋燕. 电场诱导(MgO)12储氢的从头计算研究. 物理学报, 2015, 64(19): 193601. doi: 10.7498/aps.64.193601
    [7] 祁鹏堂, 陈宏善. Li修饰的C24团簇的储氢性能. 物理学报, 2015, 64(23): 238102. doi: 10.7498/aps.64.238102
    [8] 赵银昌, 戴振宏, 隋鹏飞, 张晓玲. 二维Li+BC3结构高储氢容量的研究. 物理学报, 2013, 62(13): 137301. doi: 10.7498/aps.62.137301
    [9] 沈超, 胡雅婷, 周硕, 马晓兰, 李华. 单壁碳纳米管低温及常温下储氢行为的模拟计算研究. 物理学报, 2013, 62(3): 038801. doi: 10.7498/aps.62.038801
    [10] 郭龙婷, 孙继忠, 黄艳, 刘升光, 王德真. 低能氢粒子沿不同角度轰击钨(001)表面的反射概率及入射深度分布的分子动力学研究. 物理学报, 2013, 62(22): 227901. doi: 10.7498/aps.62.227901
    [11] 黄依娜, 万发荣, 焦治杰. 利用透射电镜衬度像变化判定位错环类型及注氢纯铁中形成的位错环分析. 物理学报, 2011, 60(3): 036802. doi: 10.7498/aps.60.036802
    [12] 颜克凤, 李小森, 孙丽华, 陈朝阳, 夏志明. 储氢笼型水合物生成促进机理的分子动力学模拟研究. 物理学报, 2011, 60(12): 128801. doi: 10.7498/aps.60.128801
    [13] 叶佳宇, 刘亚丽, 王靖林, 何垚. Zr催化剂对NaAlH4和Na3AlH6可逆储氢性能的影响. 物理学报, 2010, 59(6): 4178-4185. doi: 10.7498/aps.59.4178
    [14] 刘秀英, 王朝阳, 唐永建, 孙卫国, 吴卫东, 张厚琼, 刘淼, 袁磊, 徐嘉靖. 单壁BN纳米管和碳纳米管物理吸附储氢性能的理论对比研究. 物理学报, 2009, 58(2): 1126-1131. doi: 10.7498/aps.58.1126
    [15] 戴伟, 唐永建, 王朝阳, 孙卫国. 自制吸附仪储氢性能测试研究. 物理学报, 2009, 58(10): 7313-7316. doi: 10.7498/aps.58.7313
    [16] 鲍丙豪, 任乃飞, 王国余. 各向异性场对非晶态合金应力阻抗效应的影响. 物理学报, 2008, 57(4): 2519-2523. doi: 10.7498/aps.57.2519
    [17] 方 方, 郑时有, 周广有, 陈国荣, 孙大林. 氢致LaMg2Ni合金薄膜的光电性能变化. 物理学报, 2008, 57(6): 3813-3817. doi: 10.7498/aps.57.3813
    [18] 唐元洪, 林良武, 郭 池. 多壁碳纳米管束储氢机理的X射线吸收谱研究. 物理学报, 2006, 55(8): 4197-4201. doi: 10.7498/aps.55.4197
    [19] 郑 宏, 王绍青, 成会明. 微孔对单壁纳米碳管储氢性能的影响. 物理学报, 2005, 54(10): 4852-4856. doi: 10.7498/aps.54.4852
    [20] 荣传兵, 赵玉华, 徐民, 赵恒和, 程力智, 何开元. 具有宽过冷液相区的Fe62Co8-x(Cr,Mo)xNb4Zr6B20非晶态合金的热稳定性与磁性. 物理学报, 2001, 50(11): 2235-2240. doi: 10.7498/aps.50.2235
计量
  • 文章访问数:  4114
  • PDF下载量:  517
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-02
  • 修回日期:  2017-06-08
  • 刊出日期:  2017-09-05

非晶态合金与氢相互作用的研究进展

    基金项目: 国家自然科学基金(批准号:51601090,51571112,51471087,51621001)资助的课题.

摘要: 非晶态合金在力学性能、耐磨耐蚀性、磁性等方面比传统晶态合金具有显著优势,是一类有优良应用前景的新型结构与功能材料.非晶态合金与氢相互作用可以产生很多有趣的物理化学现象和应用.本文从物理基础和材料应用两个方面评述非晶态合金和氢相互作用的研究进展,在物理基础研究方面,从氢在非晶态合金中的存在状态出发,讨论氢在非晶态合金中的溶解、分布、占位和扩散等相关物理问题,进而分析氢对非晶态合金的热稳定性、磁性、内耗、氢脆等的影响.在材料应用研究方面,对非晶态储氢合金、非晶态合金氢功能膜、吸氢改善非晶态合金的塑性和玻璃形成能力、氢致非晶化、利用非晶态合金制备纳米储氢材料等方面的研究进展进行评述.最后总结并展望有关非晶态合金与氢相互作用的研究和应用.

English Abstract

参考文献 (103)

目录

    /

    返回文章
    返回