搜索

x
中国物理学会期刊

介电层表面直接生长石墨烯的研究进展

CSTR: 32037.14.aps.66.216804

Research progress of direct synthesis of graphene on dielectric layer

CSTR: 32037.14.aps.66.216804
PDF
导出引用
  • 作为21世纪备受瞩目的材料,石墨烯兼具优异的电、热、光与力学性质,具有十分广阔的研究价值与应用价值.目前主要通过在金属基底上生长获得石墨烯,并将其转移至目标介电层基底上以构筑电子器件.转移过程不可避免地引入了褶皱、裂纹、破损以及聚合物/金属残留,严重损害了石墨烯的性能.因而直接在介电基底上制备高质量的石墨烯薄膜具有重要意义.本文总结了近年来在介电衬底上直接生长石墨烯的研究进展:阐述了金属辅助法、等离子体增强法以及热力学或动力学调控法等多种生长手段;介绍了多种介电/绝缘基底包括SiO2/Si,Al2O3,SrTiO3,h-BN,SiC,Si3N4以及玻璃表面生长石墨烯的特点与性能,分析了其可能的生长机理.根据拉曼谱图、薄层电阻、透光率、载流子迁移率等评估指标,将多种方法得到的石墨烯质量进行了总结与比较,并提出了直接在介电衬底上生成石墨烯的研究难点与趋势.

     

    As one of the most appealing materials, graphene possesses remarkable electric, thermal, photoelectric and mechanic characteristics, which make it extremely valuable both for fundamental researches and practical applications. Nowadays the synthesis of graphene is commonly achieved by growing on metal substrate via chemical vapor deposition. For the integration in micro-electric device, the as-grown graphene needs to be transferred onto target dielectric layer. However, wrinkles, cracks, damages, and chemical residues from the metal substrate and the auxiliary polymer are inevitably introduced to graphene during such a transfer process, which are greatly detrimental to the performances of the graphene devices. Therefore, the direct synthesis of graphene on dielectric layer is of great importance. Many researches about this subject have been carried out in the last few years. While only few papers have systematically reviewed the direct growth of graphene on dielectric layer. For the in-depth understanding and further research of it, a detailed overview is required. In this paper, we summarize the recent research progress of the direct syntheses of graphene on dielectric layers, and expatiate upon different growth methods, including metal assisted growth, plasma enhanced growth, thermodynamics versus kinetics tailored growth, et al. Then differences in property between graphenes grown on various dielectric and insulating layers which serve as growth substrates in the direct growing process are discussed, such as SiO2/Si, Al2O3, SrTiO3, h-BN, SiC, Si3N4 and glass. Some kinds of mechanisms for graphene to be directly grown on dielectric layers have been proposed in different reports. Here in this paper, we review the possible growth mechanisms and divide them into van der Waals epitaxial growth and catalytic growth by SiC nanoparticles or oxygen atoms. Detailed data including Raman signals, sheet resistances, transmittances, carrier motilities are listed for the direct comparison of the quality among the graphenes grown on dielectric layers. The research focus and major problems existing in this field are presented in the last part of this paper. We also prospect the possible developing trend in the direct syntheses of high quality graphenes on dielectric layers in the future.

     

    目录

    /

    返回文章
    返回