搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低能离子对高温超导YBa2Cu3O7-薄膜的表面改性和机理

王三胜 李方 吴晗 张竺立 蒋雯 赵鹏

引用本文:
Citation:

低能离子对高温超导YBa2Cu3O7-薄膜的表面改性和机理

王三胜, 李方, 吴晗, 张竺立, 蒋雯, 赵鹏

Low-energy ion beam modified surface property and mechanism of high temperature superconductor YBa2Cu3O7- thin film

Wang San-Sheng, Li Fang, Wu Han, Zhang Zhu-Li, Jiang Wen, Zhao Peng
PDF
导出引用
  • 低能氩离子束轰击并后退火处理的离子束表面改性,会影响高温超导薄膜的表面结构和超导特性,但是其中的深刻微观机理不清楚.本文通过连续改变离子束轰击时间,系统研究了离子束表面改性对于超导膜结构和临界电流密度的影响.通过扫描电子显微镜、X射线衍射、Jc-scanning测试表征样品的结构特性和超导特性,并得出内应变、氧空位缺陷等参量.研究表明,经过表面改性的钇钡铜氧(YBa2Cu3O7-,YBCO)薄膜,随轰击时间增加表面形貌会变得更加均匀致密,a轴晶粒消失,并且临界电流密度有了显著的提高.由化学键收缩配对模型分析得出,临界电流密度的提高与薄膜内应变增大和引发的局部YBCO结构中CuO键收缩有关.
    The interaction between ion beam and solid target is widely used in material modification. For the high temperature superconducting thin film modification, however, earlier experiments show that the samples are accompanied by the degradation in superconducting properties due to the structural damage of materials. In order to improve surface morphologies and superconducting properties of YBa2Cu3O7- (YBCO) thin films, we introduce a new ion beam structure modification (ISM) method. Although the ion bombardment time parameter effect is not clear, the related mechanism should be clarified. In this paper, the bombardment processes with duration times of 8 min, 10 min and 12 min are investigated in a vacuum chamber with an Ar+ Kaufman ion source, and the direction between the incident ion beam and the normal of sample is fixed at a certain angle. Surface morphologies and the microstructures of YBCO samples are characterized by scanning electron micrographs and X-ray diffraction patterns, respectively. In the respect of superconducting properties, the critical current density Jc is measured by Jc-scanning test. The results indicate that the needle-like a-axis grains and pores disappear gradually with the increase of the ion bombardment time. In order to characterize the effects of ion beam bombardment time on the internal strain in YBCO thin films, the relationship between the full width at half maximum and the Bragg diffraction angle of YBCO (00l) peak is studied by the William-Hall equation. The results show that the internal strain in YBCO thin film increases with increasing the ion beam bombardment time. At the same time, the critical current density Jc value of the sample after ISM processing increases, which is more than 2.2 times higher than that of the initial sample. The main reason for the increases of critical current density Jc in YBCO thin film is due to the drastic shrink of CuO bond caused by the increasing internal strain. Based on the bond contraction pair theory, the shrink of CuO bond improves the energy to break Cooper-pairs, and then increases the current carrying capacity of high temperature superconducting YBCO thin film, especially in copper-oxygen (CuO2) plane. The ISM process might be a useful method of markedly improving the surface morphology, meanwhile, the critical current density Jc value also increases in high temperature superconducting YBCO thin film.
      通信作者: 吴晗, wh19951004ln@163.com
    • 基金项目: 国家自然科学基金(批准号:61473023)、国家高技术研究发展计划(批准号:2014AA032703)和航天科技创新基金(批准号:10300002012117002)资助的课题.
      Corresponding author: Wu Han, wh19951004ln@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61473023), the National High Technology Research and Development Program of China (Grant No. 2014AA032703), and the Aerospace Science and Technology Innovation Fund of CASC (Grant No. 10300002012117002).
    [1]

    Wesch W, Wendlers E 2016 Ion Beam Modification of Solids Ion-Solid Interaction and Radiation Damage (Vol. 61) (Switzerland: Springer)

    [2]

    Was G S 2017 Fundamentals of Radiation Materials Science Metals and Alloys (Vol. 2) (Berlin: Springer)

    [3]

    Cybart S A, Bali R, Hlawacek G, Rder F, Fassbender J 2016 Focused Helium and Neon Ion Beam Modification of High-Tm C Superconductors and Magnetic Materials In: Hlawacek G, Glzhuser A (eds) Helium Ion Microscopy (Switzerland: Springer) p415

    [4]

    Grove W R 1853 Philos. Mag. Ser. 4 5 203

    [5]

    Castro M, Cuerno R, Vzquez L, Gago R 2005 Phys. Rev. Lett. 94 016102

    [6]

    Szabo O, Flickyngerova S, Tvarozek V, Novotny I 2014 Proc. 29th International Conference on Microelectronics (MIEL 2014) Belgrade, Serbia May 12-14, 2014 p245

    [7]

    Krger H, Reinke P, Bttner M, Oelhafen P 2005 J. Chem. Phys. 123 114706

    [8]

    Wang S S, Zhang Y, Zhang Z L, Jiang W, Li F, Chen Z Y 2017 J. Magn. Magn. Mater. 444 291

    [9]

    Hebard A F, Fleming R M, Short K T, White A E, Rice C E, Levi A F J, Eick R H 1989 Appl. Phys. Lett. 55 1915

    [10]

    Sun Z Y, Wang S S, Wu K, Liu Q, Han Z 2004 Physica C 412-414 1331

    [11]

    Zhao B, Sun Z Y, Shi K, Yang J, Sun Y P, Han Z H 2003 Physica C 386 342

    [12]

    Dawley J T, Clem P G, Siegal M P, Tallant D R, Overmyer D L 2002 J. Mater. Res. 17 1900

    [13]

    Vermeir P, Feys J, Schaubroeck J, Verbeken K, Bcker M, van Driessche I 2012 Mater. Chem. Phys. 133 998

    [14]

    Hanley L, Sinnott S B 2002 Sur. Sci. 500 500

    [15]

    Biswal R, John J, Mallick P, Dash B N, Kulriya P K, Avasthi D K, Kanjilal D, Behera D, Mohanty T, Raychaudhuri P, Mishra N C 2009 J. Appl. Phys. 106 053912

    [16]

    Jiang H G, Rhle M, Lavernia E J 1999 J. Mater. Res. 14 549

    [17]

    Benzi P, Bottizzo E, Rizzi N 2004 J. Cryst. Growth 269 625

    [18]

    Deutscher G, de Gennes P G 2007 C. R. Phys. 8 937

    [19]

    Deutscher G 2010 Appl. Phys. Lett. 96 122502

    [20]

    Deutscher G 2012 J. Appl. Phys. 111 112603

    [21]

    Llordes A, Palau A, Gzquez J, Coll M, Vlad R, Pomar A, Arbiol J, Guzmn R, Ye S, Rouco V, Sandiumenge F, Ricart S, Puig T, Varela M, Chateigner D, Vanacken J, Gutirrez J, Moshchalkov V, Deutscher G, Magen C, Obradors X 2012 Nat. Mater. 11 329

    [22]

    Wrdenweber R 1999 Supercond. Sci. Technol. 12 R86

  • [1]

    Wesch W, Wendlers E 2016 Ion Beam Modification of Solids Ion-Solid Interaction and Radiation Damage (Vol. 61) (Switzerland: Springer)

    [2]

    Was G S 2017 Fundamentals of Radiation Materials Science Metals and Alloys (Vol. 2) (Berlin: Springer)

    [3]

    Cybart S A, Bali R, Hlawacek G, Rder F, Fassbender J 2016 Focused Helium and Neon Ion Beam Modification of High-Tm C Superconductors and Magnetic Materials In: Hlawacek G, Glzhuser A (eds) Helium Ion Microscopy (Switzerland: Springer) p415

    [4]

    Grove W R 1853 Philos. Mag. Ser. 4 5 203

    [5]

    Castro M, Cuerno R, Vzquez L, Gago R 2005 Phys. Rev. Lett. 94 016102

    [6]

    Szabo O, Flickyngerova S, Tvarozek V, Novotny I 2014 Proc. 29th International Conference on Microelectronics (MIEL 2014) Belgrade, Serbia May 12-14, 2014 p245

    [7]

    Krger H, Reinke P, Bttner M, Oelhafen P 2005 J. Chem. Phys. 123 114706

    [8]

    Wang S S, Zhang Y, Zhang Z L, Jiang W, Li F, Chen Z Y 2017 J. Magn. Magn. Mater. 444 291

    [9]

    Hebard A F, Fleming R M, Short K T, White A E, Rice C E, Levi A F J, Eick R H 1989 Appl. Phys. Lett. 55 1915

    [10]

    Sun Z Y, Wang S S, Wu K, Liu Q, Han Z 2004 Physica C 412-414 1331

    [11]

    Zhao B, Sun Z Y, Shi K, Yang J, Sun Y P, Han Z H 2003 Physica C 386 342

    [12]

    Dawley J T, Clem P G, Siegal M P, Tallant D R, Overmyer D L 2002 J. Mater. Res. 17 1900

    [13]

    Vermeir P, Feys J, Schaubroeck J, Verbeken K, Bcker M, van Driessche I 2012 Mater. Chem. Phys. 133 998

    [14]

    Hanley L, Sinnott S B 2002 Sur. Sci. 500 500

    [15]

    Biswal R, John J, Mallick P, Dash B N, Kulriya P K, Avasthi D K, Kanjilal D, Behera D, Mohanty T, Raychaudhuri P, Mishra N C 2009 J. Appl. Phys. 106 053912

    [16]

    Jiang H G, Rhle M, Lavernia E J 1999 J. Mater. Res. 14 549

    [17]

    Benzi P, Bottizzo E, Rizzi N 2004 J. Cryst. Growth 269 625

    [18]

    Deutscher G, de Gennes P G 2007 C. R. Phys. 8 937

    [19]

    Deutscher G 2010 Appl. Phys. Lett. 96 122502

    [20]

    Deutscher G 2012 J. Appl. Phys. 111 112603

    [21]

    Llordes A, Palau A, Gzquez J, Coll M, Vlad R, Pomar A, Arbiol J, Guzmn R, Ye S, Rouco V, Sandiumenge F, Ricart S, Puig T, Varela M, Chateigner D, Vanacken J, Gutirrez J, Moshchalkov V, Deutscher G, Magen C, Obradors X 2012 Nat. Mater. 11 329

    [22]

    Wrdenweber R 1999 Supercond. Sci. Technol. 12 R86

  • [1] 赵珀, 王建强, 陈梅清, 杨金学, 苏钲雄, 卢晨阳, 刘华军, 洪智勇, 高瑞. EuBa2Cu3O7–δ超导带材中掺杂相对He+离子辐照缺陷演化及超导电性的影响. 物理学报, 2024, 73(8): 087401. doi: 10.7498/aps.73.20240124
    [2] 王国建, 刘燕文, 李芬, 田宏, 朱虹, 李云, 赵恒邦, 王小霞, 张志强. 离子束表面处理对光电阴极发射的影响. 物理学报, 2021, 70(21): 218503. doi: 10.7498/aps.70.20210587
    [3] 梁超, 张洁, 赵可, 羊新胜, 赵勇. 拓扑超导体FeSexTe1–x单晶超导性能与磁通钉扎. 物理学报, 2020, 69(23): 237401. doi: 10.7498/aps.69.20201125
    [4] 程鹏, 杨育梅. 临界电流密度对圆柱状超导体力学特性的影响. 物理学报, 2019, 68(18): 187402. doi: 10.7498/aps.68.20190759
    [5] 董晓莉, 袁洁, 黄裕龙, 冯中沛, 倪顺利, 田金朋, 周放, 金魁, 赵忠贤. 铁硒基超导研究新进展:高质量(Li,Fe)OHFeSe单晶薄膜. 物理学报, 2018, 67(12): 127403. doi: 10.7498/aps.67.20180770
    [6] 王妙, 邬华春, 杨万民, 杨芃焘, 王小梅, 郝大鹏, 党文佳, 张明, 胡成西. BaO掺杂对单畴GdBCO超导块材性能的影响(二). 物理学报, 2017, 66(16): 167401. doi: 10.7498/aps.66.167401
    [7] 丁发柱, 古宏伟, 王洪艳, 屈飞, 商红静, 张慧亮, 董泽斌, 张贺, 周微微. 插入二氧化铈薄膜提高MOD-YBa2Cu3O7-x厚膜超导性能的研究. 物理学报, 2016, 65(9): 097401. doi: 10.7498/aps.65.097401
    [8] 张晓娟, 张玉凤, 彭里其, 周文礼, 徐燕, 周迪帆, 和泉充. 纳米微粒BaFe12O19掺杂对单畴超导块材GdBa2Cu3O7-δ性能的影响. 物理学报, 2015, 64(24): 247401. doi: 10.7498/aps.64.247401
    [9] 郭志超, 李平林. 晶粒细化对MgB2超导临界电流密度的作用. 物理学报, 2014, 63(6): 067401. doi: 10.7498/aps.63.067401
    [10] 陈艺灵, 张辰, 何法, 王达, 王越, 冯庆荣. MgB2超导膜的厚度与其Jc(5K,0T)的关系. 物理学报, 2013, 62(19): 197401. doi: 10.7498/aps.62.197401
    [11] 陈昌兆, 蔡传兵, 刘志勇, 应利良, 高 波, 刘金磊, 鲁玉明. NdBa2Cu3O7-δ/YBa2Cu3O7-δ多层膜体系的外延结构和磁通钉扎的研究. 物理学报, 2008, 57(7): 4371-4378. doi: 10.7498/aps.57.4371
    [12] 吴汉华, 汪剑波, 龙北玉, 吕宪义, 龙北红, 金曾孙, 白亦真, 毕冬梅. 电流密度对铝合金微弧氧化膜物理化学特性的影响. 物理学报, 2005, 54(12): 5743-5749. doi: 10.7498/aps.54.5743
    [13] 刘少斌, 莫锦军, 袁乃昌. 等离子体的分段线性电流密度递推卷积FDTD算法. 物理学报, 2004, 53(3): 778-782. doi: 10.7498/aps.53.778
    [14] 宁兆元, 程珊华, 叶超. 电子回旋共振等离子体增强化学气相沉积a-CFx薄膜的化学键结构. 物理学报, 2001, 50(3): 566-571. doi: 10.7498/aps.50.566
    [15] 王峰, 孙国庆, 孔祥木, 单磊, 金新, 张宏. YBa2Cu3O7-δ熔融织构样品的磁响应研究. 物理学报, 2001, 50(8): 1590-1595. doi: 10.7498/aps.50.1590
    [16] 孙俊生, 武传松. 熔池表面形状对电弧电流密度分布的影响. 物理学报, 2000, 49(12): 2427-2432. doi: 10.7498/aps.49.2427
    [17] 韩谷昌, 韩汉民, 王智河, 王顺喜, 刘小宁, 刘智民, 奚正平, 周廉. 银包套Bi(2223)带材临界电流密度的低温强磁场特性. 物理学报, 1995, 44(8): 1274-1278. doi: 10.7498/aps.44.1274
    [18] 王德宁, 王渭源. 化合物半导体中离子射程参数与化学键中离子特性间关系研究. 物理学报, 1989, 38(6): 923-930. doi: 10.7498/aps.38.923
    [19] 杜家驹, 姜建义, 王翔, 尹华清. 单相钇钡铜氧高温超导体的超导转变与内耗原位研究. 物理学报, 1988, 37(9): 1556-1559. doi: 10.7498/aps.37.1556
    [20] 霍裕平, 刘志远, 陈肖兰. 共价半导体的化学键模型. 物理学报, 1962, 18(12): 609-620. doi: 10.7498/aps.18.609
计量
  • 文章访问数:  6594
  • PDF下载量:  153
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-14
  • 修回日期:  2017-10-28
  • 刊出日期:  2018-02-05

/

返回文章
返回