搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冷原子系综中两正交光场偏振模高效率存储的实验研究

温亚飞 王圣智 徐忠孝 李淑静 王海

引用本文:
Citation:

冷原子系综中两正交光场偏振模高效率存储的实验研究

温亚飞, 王圣智, 徐忠孝, 李淑静, 王海

Highly-efficient optical storage of two orthogonal polarization modes in a cold atom ensemble

Wen Ya-Fei, Wang Sheng-Zhi, Xu Zhong-Xiao, Li Shu-Jing, Wang Hai
PDF
导出引用
  • 高效率光量子信息存储是可扩展光量子信息处理的一个重要工具.本文对一个冷原子系综中两正交光场偏振模的高效率存储进行了实验研究.通过在雪茄型冷原子系统上施加一个中等强度的磁场,消除了原子Zeeman子能级的简并性,从而使磁敏感自旋波从电磁感应透明系统中被移出,由此完成了两正交光场偏振模高效率、长寿命的量子存储.实验测量了两偏振模存储效率与存储时间以及实验重复频率的关系,结果表明,随着重复频率的增加,存储效率逐渐降低,在10 Hz时,测量得到两偏振模存储效率为30%,同时存储寿命达到3 ms.测量结果为偏振纠缠在冷原子系统中的存储提供了重要的实验基础.
    Optical quantum memory plays an important role in scaling-up linear optical quantum computations and longdistance quantum communication. For effectively realizing such tasks, a long-lived and highly-efficient quantum memory is needed. The dynamic electromagnetically-induced-transparency (EIT) process can be used for completing an absorptive storage scheme in an atomic ensemble. In such a process, the quantum states of coming single photons can be coherently transformed into spin waves associated with coherences between atomic ground levels via switching off controlling light beam. For storing a single-mode optical signal, a pair of ground levels is involved. While for storing an optical polarization qubit, i.e., two orthogonal polarization modes, the coherence between two pairs of ground levels will be involved. Also, to obtain a high efficiency in the EIT optical storage, the optical-depth of the cold ensemble should be high. For prolonging the coherent time of the spin waves stored in atomic ensemble, decoherence between spin waves due to atomic motion and non-uniform Zeeman shift of ground levels should be effectively suppressed. Recently, a long-lived and highly-efficient optical quantum memory for single-mode storage in a high-optical-depth cold atom ensemble has been experimentally demonstrated via the gradient echo memory scheme (2016 Optical 3 100). While, for the optical polarization qubit storage, a long lifetime (in ms) and high-fidelity EIT storage experiment has been achieved by our group, but the storage efficiency in the experiment is very low (8%) due to lower optical depth of the cold ensemble (2013 Phys. Rev. Lett. 111 240503). The storage efficiency in long-lived storage of two orthogonal polarization modes still needs further improving. Here in this paper we demonstrate an experiment of long-lived and highly-efficient storage of two optical orthogonal polarization modes in a high optical-depth cold atomic ensemble via dynamic EIT process. For achieving a long lifetime in the storage experiment, we follow the two steps, which are used in our previous work (2013 Phys. Rev. Lett. 111 240503). 1) We make the signal and writing-reading light beams collinearly pass through the cold-atom cloud along the z direction to suppress the decoherence between the spin waves due to atomic motion. 2) We apply a moderate magnetic field (13.5 G) to the cold-atom ensemble to lift Zeeman degeneracy. So, the magnetic-field-sensitive transitions are removed from EIT system and the two optical orthogonal polarization modes are stored as two magnetic-field-insensitive spin waves. In contrast to our previous experiment, we finish the storage in the high optical-depth cold atomic ensemble. To obtain such a high optical-depth cold atomic ensemble, we expand the diameters of the trapping laser beams and use a pair of rectangular magnetic coils in a magnetic optical trap (MOT) to prepare a cigar-shaped cold atomic ensemble. The MOT magnetic field is further compressed, and then the optical-depth of the cold atomic ensemble increases up to ~11 in the present experiment, which allows us to achieve a storage efficiency of 30%, which exceeds the previous value (8%). At an MOT repetition rate of 10 Hz, the measured zero-delay storage efficiencies for the two orthogonal polarization modes are symmetric, which go up to ~30%. The 1/e-folding lifetimes of the two orthogonal polarization modes rise up to 3 ms. We also measure the dependence of the zero-delay retrieval efficiency on the MOT repetition rate F and find that the storage efficiency is still more than 20% when the repetition rate F is 50 Hz. The present results will allow one to achieve a long lifetime and highly-efficient quantum memory for photonic polarization qubit and then find applications in scaling-up linear-optical quantum computations and long-distance quantum communication.
      通信作者: 徐忠孝, xuzhongxiao@sxu.edu.cn
    • 基金项目: 国家重点研发计划(批准号:2016YFA0301402)、国家自然科学基金(批准号:11475109,11274211)、国家自然科学基金青年科学基金(批准号:11604191)、山西省应用基础研究计划(批准号:201601D202007)和山西省1331工程重点学科建设计划经费(批准号:1331KSC)资助的课题.
      Corresponding author: Xu Zhong-Xiao, xuzhongxiao@sxu.edu.cn
    • Funds: Project supported by Key Project of the Ministry of Science and Technology of China (Grant No. 2016YFA0301402), the National Natural Science Foundation of China (Grant Nos. 11475109, 11274211), The Young Science Fund of the National Nature Science Foundation of China (Grant No. 11604191), the Applied Basic Research Program of Shanxi Province, China (Grant No. 201601D202007), the Fund for Shanxi 1331 Project Key Subjects Construction, China (Grant No. 1331KSC).
    [1]

    Fanchini F F, Hornos J E M, Napolitano R D J 2007 Phys. Rev.. 75 022329

    [2]

    Sangouard N, Simon C, Min J, Zbinden H, de Riedmatten H, Gisin N 2007 Phys. Rev.. 76 050301

    [3]

    Sangouard N, Simon C, Zhao B, Chen Y A, de Riedmatten H, Pan J W, Gisin N 2008 Phys. Rev.. 77 062301

    [4]

    Briegel H J, Dr W, Cirac J I, Zoller P 1998 Phys. Rev. Lett. 81 5932

    [5]

    Jia X J, Su X L, Pan Q, Xie C D, Peng K C 2005 Acta Phys. Sin. 54 1262(in Chinese) [贾晓军, 苏晓龙, 潘庆, 谢常德, 彭堃墀 2005 物理学报 54 1262]

    [6]

    Bao X H, Reingruber A, Dietrich P, Rui J, Dck A, Strassel T, Li L, Liu N L, Zhao B, Pan J W 2012 Nat. Phys. 8 517

    [7]

    Zhang S, Chen J F, Liu C, Zhou S, Loy M M, Wong G K, Du S 2012 Rev. Sci. Instrum 83 073102

    [8]

    Zhang Z Y, Wu Y L, Xu Z X, Chen L R, Li S J, Wang H 2013 Acta Sin. Quan. Opt. 19 340(in Chinese) [张志英, 武跃龙, 徐忠孝, 陈力荣, 李淑静, 王海 2013 量子光学学报 19 340]

    [9]

    Novikova I, Phillips N B, Gorshkov A V 2008 Phys. Rev.. 78 021802

    [10]

    Yang S J, Wang X J, Li J, Rui J, Bao X H, Pan J W 2015 Phys. Rev. Lett. 114 210501

    [11]

    Bao X H, Reingruber A, Dietrich P, Rui J, Dck A, Strassel T, Li L, Liu N L, Zhao B, Pan J W 2012 Nat. Phys. 8 517

    [12]

    Xu Z X, Chen L Z, Li P, Wen Y F, Wang H 2015 Acta Sin. Quan. Opt. 21 113(in Chinese) [徐忠孝, 陈力荣, 李萍, 温亚飞, 王海 2015 量子光学学报 21 113]

    [13]

    Xu Z X, Wu Y L, Tian L, Chen L R, Zhang Z Y, Yan Z H, Li S J, Wang H, Xie C D, Peng K C 2013 Phys. Rev. Lett. 111 240503

    [14]

    Schnorrberger U, Thompson J D, Trotzky S, Pugatch R, Davidson N, Kuhr S 2009 Phys. Rev. Lett. 103 033003

    [15]

    Liu Z D, Wu Q 2004 Acta Phys. Sin. 53 2970(in Chinese) [刘正东, 武强 2004 物理学报 53 2970]

    [16]

    Sangouard N, Simon C, Riedmatten H, Gisin N 2011 Rev. Mod. Phys. 83 33

    [17]

    Wang B, Li S J, Chang H, Wu H B, Xie C D, Wang H 2005 Acta Phys. Sin. 54 4136(in Chinese) [王波, 李淑静, 常宏, 武海斌, 谢长德, 王海 2005 物理学报 54 4136]

    [18]

    Bian C L, Zhu J, Lu J W, Yan J L, Wang Z B, Qu Z Y, Zhang W P 2013 Acta Phys. Sin. 62 174207(in Chinese) [边成玲, 朱江, 陆佳雯, 闫甲璐, 陈丽清, 王增斌, 区泽宇, 张卫平 2013 物理学报 62 174207]

    [19]

    Zhang S C, Zhou S Y, Loy M M T, Wong G K L, Du S W 2011 Opt. Lett. 36 23

    [20]

    Chen Y H, Lee M J, Wang I C, Du S, Chen Y F, Chen Y C, Yu I A 2013 Phys. Rev. Lett. 110 083601

    [21]

    Cho Y W, Campbell G T, Everett J L, Bernu J, Higginbottom D B, Cao M T, Geng J, Robins N P, Lam P K, Buchler B C 2016 Optica 3 100

    [22]

    Zhao B, Chen Y A, Bao X H, Strassel T, Chuu C S, Jin X M, Schmiedmayer J, Yuan Z S, Chen S, Pan J W 2009 Nature Phys. 5 95

    [23]

    Gibble K E, Kasapi S, Chu S 1992 Opt. Lett. 17 526

    [24]

    Joshi A, Xiao M 2005 Phys. Rev.. 71 041801

    [25]

    Fleischhauer M, Lukin M D 2000 Phys. Rev. Lett. 84 5094

    [26]

    Wang H, Li S J, Xu Z X, Zhao X B, Zhang L J, Li J H, Wu Y L, Xie C D, Peng K C, Xiao M 2011 Phys. Rev.. 83 043815

    [27]

    Zhao R, Dudin Y O, Jenkins S D, Campbell C J, Matsukevich D N, Kennedy A B 2008 Nature Phys. 5 100

  • [1]

    Fanchini F F, Hornos J E M, Napolitano R D J 2007 Phys. Rev.. 75 022329

    [2]

    Sangouard N, Simon C, Min J, Zbinden H, de Riedmatten H, Gisin N 2007 Phys. Rev.. 76 050301

    [3]

    Sangouard N, Simon C, Zhao B, Chen Y A, de Riedmatten H, Pan J W, Gisin N 2008 Phys. Rev.. 77 062301

    [4]

    Briegel H J, Dr W, Cirac J I, Zoller P 1998 Phys. Rev. Lett. 81 5932

    [5]

    Jia X J, Su X L, Pan Q, Xie C D, Peng K C 2005 Acta Phys. Sin. 54 1262(in Chinese) [贾晓军, 苏晓龙, 潘庆, 谢常德, 彭堃墀 2005 物理学报 54 1262]

    [6]

    Bao X H, Reingruber A, Dietrich P, Rui J, Dck A, Strassel T, Li L, Liu N L, Zhao B, Pan J W 2012 Nat. Phys. 8 517

    [7]

    Zhang S, Chen J F, Liu C, Zhou S, Loy M M, Wong G K, Du S 2012 Rev. Sci. Instrum 83 073102

    [8]

    Zhang Z Y, Wu Y L, Xu Z X, Chen L R, Li S J, Wang H 2013 Acta Sin. Quan. Opt. 19 340(in Chinese) [张志英, 武跃龙, 徐忠孝, 陈力荣, 李淑静, 王海 2013 量子光学学报 19 340]

    [9]

    Novikova I, Phillips N B, Gorshkov A V 2008 Phys. Rev.. 78 021802

    [10]

    Yang S J, Wang X J, Li J, Rui J, Bao X H, Pan J W 2015 Phys. Rev. Lett. 114 210501

    [11]

    Bao X H, Reingruber A, Dietrich P, Rui J, Dck A, Strassel T, Li L, Liu N L, Zhao B, Pan J W 2012 Nat. Phys. 8 517

    [12]

    Xu Z X, Chen L Z, Li P, Wen Y F, Wang H 2015 Acta Sin. Quan. Opt. 21 113(in Chinese) [徐忠孝, 陈力荣, 李萍, 温亚飞, 王海 2015 量子光学学报 21 113]

    [13]

    Xu Z X, Wu Y L, Tian L, Chen L R, Zhang Z Y, Yan Z H, Li S J, Wang H, Xie C D, Peng K C 2013 Phys. Rev. Lett. 111 240503

    [14]

    Schnorrberger U, Thompson J D, Trotzky S, Pugatch R, Davidson N, Kuhr S 2009 Phys. Rev. Lett. 103 033003

    [15]

    Liu Z D, Wu Q 2004 Acta Phys. Sin. 53 2970(in Chinese) [刘正东, 武强 2004 物理学报 53 2970]

    [16]

    Sangouard N, Simon C, Riedmatten H, Gisin N 2011 Rev. Mod. Phys. 83 33

    [17]

    Wang B, Li S J, Chang H, Wu H B, Xie C D, Wang H 2005 Acta Phys. Sin. 54 4136(in Chinese) [王波, 李淑静, 常宏, 武海斌, 谢长德, 王海 2005 物理学报 54 4136]

    [18]

    Bian C L, Zhu J, Lu J W, Yan J L, Wang Z B, Qu Z Y, Zhang W P 2013 Acta Phys. Sin. 62 174207(in Chinese) [边成玲, 朱江, 陆佳雯, 闫甲璐, 陈丽清, 王增斌, 区泽宇, 张卫平 2013 物理学报 62 174207]

    [19]

    Zhang S C, Zhou S Y, Loy M M T, Wong G K L, Du S W 2011 Opt. Lett. 36 23

    [20]

    Chen Y H, Lee M J, Wang I C, Du S, Chen Y F, Chen Y C, Yu I A 2013 Phys. Rev. Lett. 110 083601

    [21]

    Cho Y W, Campbell G T, Everett J L, Bernu J, Higginbottom D B, Cao M T, Geng J, Robins N P, Lam P K, Buchler B C 2016 Optica 3 100

    [22]

    Zhao B, Chen Y A, Bao X H, Strassel T, Chuu C S, Jin X M, Schmiedmayer J, Yuan Z S, Chen S, Pan J W 2009 Nature Phys. 5 95

    [23]

    Gibble K E, Kasapi S, Chu S 1992 Opt. Lett. 17 526

    [24]

    Joshi A, Xiao M 2005 Phys. Rev.. 71 041801

    [25]

    Fleischhauer M, Lukin M D 2000 Phys. Rev. Lett. 84 5094

    [26]

    Wang H, Li S J, Xu Z X, Zhao X B, Zhang L J, Li J H, Wu Y L, Xie C D, Peng K C, Xiao M 2011 Phys. Rev.. 83 043815

    [27]

    Zhao R, Dudin Y O, Jenkins S D, Campbell C J, Matsukevich D N, Kennedy A B 2008 Nature Phys. 5 100

  • [1] 夏刚, 张亚鹏, 汤婧雯, 李春燕, 吴春旺, 张杰, 周艳丽. 电磁感应透明条件下里德伯原子系统的亚稳动力学. 物理学报, 2024, 73(10): 104203. doi: 10.7498/aps.73.20240233
    [2] 王江琼, 李维康, 张文业, 万宝全, 查俊伟. 电缆绝缘材料交联聚乙烯的老化及寿命调控. 物理学报, 2024, 73(7): 078801. doi: 10.7498/aps.73.20240201
    [3] 周飞, 贾凤东, 刘修彬, 张剑, 谢锋, 钟志萍. 基于冷里德堡原子电磁感应透明的微波电场测量. 物理学报, 2023, 72(4): 045204. doi: 10.7498/aps.72.20222059
    [4] 裴丽娅, 郑世阳, 牛金艳. 基于调控原子相干的Λ-型电磁感应透明与吸收. 物理学报, 2022, 71(22): 224201. doi: 10.7498/aps.71.20220950
    [5] 杨德文, 陈昌华, 史彦超, 肖仁珍, 滕雁, 范志强, 刘文元, 宋志敏, 孙钧. X波段高效率速调型相对论返波管研究. 物理学报, 2020, 69(16): 164102. doi: 10.7498/aps.69.20200434
    [6] 严冬, 王彬彬, 白文杰, 刘兵, 杜秀国, 任春年. 里德伯电磁感应透明中的相位. 物理学报, 2019, 68(8): 084203. doi: 10.7498/aps.68.20181938
    [7] 杨智伟, 焦月春, 韩小萱, 赵建明, 贾锁堂. 弱射频场中Rydberg原子的电磁感应透明. 物理学报, 2017, 66(9): 093202. doi: 10.7498/aps.66.093202
    [8] 陈秋成. 半导体三量子点电磁感应透明介质中的非线性法拉第偏转. 物理学报, 2016, 65(24): 247801. doi: 10.7498/aps.65.247801
    [9] 杨智伟, 焦月春, 韩小萱, 赵建明, 贾锁堂. 调制激光场中Rydberg原子的电磁感应透明. 物理学报, 2016, 65(10): 103201. doi: 10.7498/aps.65.103201
    [10] 白金海, 芦小刚, 缪兴绪, 裴丽娅, 王梦, 高艳磊, 王如泉, 吴令安, 傅盘铭, 左战春. Rb87冷原子电磁感应透明吸收曲线不对称性的分析. 物理学报, 2015, 64(3): 034206. doi: 10.7498/aps.64.034206
    [11] 王梦, 白金海, 裴丽娅, 芦小刚, 高艳磊, 王如泉, 吴令安, 杨世平, 庞兆广, 傅盘铭, 左战春. 铷原子耦合光频率近共振时的电磁感应透明. 物理学报, 2015, 64(15): 154208. doi: 10.7498/aps.64.154208
    [12] 郭靖, 何广源, 焦中兴, 王彪. 高效率内腔式2 μm简并光学参量振荡器. 物理学报, 2015, 64(8): 084207. doi: 10.7498/aps.64.084207
    [13] 赵虎, 李铁夫, 刘建设, 陈炜. 基于超导量子比特的电磁感应透明研究进展. 物理学报, 2012, 61(15): 154214. doi: 10.7498/aps.61.154214
    [14] 佘彦超, 张蔚曦, 王登龙. 电磁感应透明介质中非线性法拉第偏转. 物理学报, 2011, 60(6): 064205. doi: 10.7498/aps.60.064205
    [15] 佘彦超, 王登龙, 丁建文. 电磁感应透明介质中的弱光空间暗孤子环. 物理学报, 2009, 58(5): 3198-3202. doi: 10.7498/aps.58.3198
    [16] 庄 飞, 沈建其, 叶 军. 调控电磁感应透明气体折射率实现可控光子带隙结构. 物理学报, 2007, 56(1): 541-545. doi: 10.7498/aps.56.541
    [17] 姚 鸣, 朱卡的, 袁晓忠, 蒋逸文, 吴卓杰. 声子辅助的电磁感应透明和超慢光效应的研究. 物理学报, 2006, 55(4): 1769-1773. doi: 10.7498/aps.55.1769
    [18] 刘正东, 武 强. 被三个耦合场驱动的四能级原子的电磁感应透明. 物理学报, 2004, 53(9): 2970-2973. doi: 10.7498/aps.53.2970
    [19] 赵建明, 赵延霆, 黄涛, 肖连团, 贾锁堂. 双抽运光作用电磁感应透明的实验研究. 物理学报, 2004, 53(4): 1023-1026. doi: 10.7498/aps.53.1023
    [20] 李永放, 孙建锋. 梯型四能级系统中超窄电磁感应透明与无反转增益. 物理学报, 2003, 52(3): 547-555. doi: 10.7498/aps.52.547
计量
  • 文章访问数:  5437
  • PDF下载量:  136
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-27
  • 修回日期:  2017-10-10
  • 刊出日期:  2018-01-05

/

返回文章
返回