搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无线多径信道中基于时间反演的物理层安全传输机制

朱江 王雁 杨甜

引用本文:
Citation:

无线多径信道中基于时间反演的物理层安全传输机制

朱江, 王雁, 杨甜

Secure transmission mechanism based on time reversal over wireless multipath channels

Zhu Jiang, Wang Yan, Yang Tian
PDF
导出引用
  • 宽带无线通信用户大多处在复杂的环境中,其时变多径传播和开放特性将严重影响通信系统的性能.针对物理层安全研究中的窃听信道问题,提出了一种适用于宽带无线多径信道的联合时间反演技术和发端人工噪声的物理层安全传输机制.首先,在一个典型窃听信道模型中采用时间反演技术,利用其时空聚焦性来提高信息在传输过程中的安全性;其次,由于时间反演的时空聚焦性,信息在聚焦点附近容易被窃听,通过在发送端加入人工噪声来扰乱窃听用户对保密信息的窃听,由于合法用户采用零空间人工噪声法,人工噪声对合法用户没有影响.理论分析和仿真结果表明,与已有物理层安全机制相比,所提机制可以有效地提高系统的保密信干噪比和可达保密速率,降低合法用户的误比特率,系统的保密性能得到提升.
    Broadband wireless communication is implemented primarily in a complicated environment. The complex environment with time-varying multi-path propagation characteristics will seriously affect the performance of communication. To solve the problem of insecurity in information transmission in wireless channels, in this paper a system is modeled by using the multi-input single output eavesdropping channel model and the security of information transmission through time reversal technology is ensured. Another problem is that the information focuses on the receiving point. Owing to the temporal and spatial focusing characteristics of the time reversal technology the information near the receiving point can be eavesdropped easily. To solve this problem, a secure transmission scheme based on time reversal technology with artificial noise interference on the transmitter side is proposed. One of the core technologies to solve this problem is to introduce the environment adaptive technique–time reversal in the wireless link. Further, the problem of a wiretap channel in physical layer security research has become a popular research topic in recent years. To solve the problems about the physical layer wiretap channel and multi-path fading in wireless channels, a novel concept combining time reversal technology with physical layer security technology is proposed. In this paper, a physical layer secure transmission scheme based on the joint time reversal technique and artificial noise at the sending end is proposed for the wireless multi-path channel. First, in a typical wiretap channel model the time reversal technique is used to improve the security of the information transmission process by using the properties of spatial and temporal focusing. It refers to the fact that information can be focused at a given moment and in space. Second, as the information is easily eavesdropped near the focus point, artificial noise is added to the sending end to disrupt the ability of the eavesdropper to eavesdrop. The artificial noise has no effect on legitimate user due to the use of null-space artificial noise in legitimate user. Based on this scheme, a closed expression, such as secure signal-to-interference and signal-to-noise ratio, an achievable secrecy rate and bit error rate are obtained, and the influences of the number of antennas, signal-to-noise ratio, and artificial noise are analyzed. The theoretical analysis and simulation results show that the proposed scheme has a higher secrecy signal-to-noise ratio, a higher rate of secrecy, and a lower bit error rate of the legitimate user than the the existing physical layer security schemes.
      通信作者: 王雁, xiaoyanzi_19911130@163.com
    • 基金项目: 国家自然科学基金(批准号:61771084)和重庆市科委自然科学基金(批准号:cstc2015jcyjA40050)资助的课题.
      Corresponding author: Wang Yan, xiaoyanzi_19911130@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61771084) and the Natural Science Foundation of Chongqing Science and Technology Commission, China (Grant No. cstc2015jcyjA40050).
    [1]

    Zhao D S, Yue W J, Yu M, Zhang S X 2012 Acta Phys. Sin. 61 074102 (in Chinese) [赵德双, 岳文君, 余敏, 张升学 2012 物理学报 61 074102]

    [2]

    Ding S, Wang B Z, Ge G D, Wang D, Zhao D S 2011 Acta Phys. Sin. 60 104101 (in Chinese) [丁帅, 王秉中, 葛广顶, 王多, 赵德双 2011 物理学报 60 104101]

    [3]

    Chen Y, Wang B, Han Y, Lai H Q, Safar Z, Liu K J R 2016 IEEE Signal Process. Mag. 33 17

    [4]

    Wang B Z, Zang R, Zhou H C 2013 J. Microwaves 29 22 (in Chinese) [王秉中, 臧锐, 周洪澄 2013 微波学报 29 22]

    [5]

    Chen Y M, Wang B Z, Ge G D 2012 Acta Phys. Sin. 61 024101 (in Chinese) [陈英明, 王秉中, 葛广顶 2012 物理学报 61 024101]

    [6]

    Ge G D, Wang B Z, Huang H Y, Zheng G 2009 Acta Phys. Sin. 58 8249 (in Chinese) [葛广顶, 王秉中, 黄海燕, 郑罡 2009 物理学报 58 8249]

    [7]

    Nardis L D, Fiorina J, Panaitopol D, Benedetto M G D 2013 Telecommun. Syst. 52 1145

    [8]

    Zang R, Wang B Z, Ding S, Gong Z S 2016 Acta Phys. Sin. 65 204102 (in Chinese) [臧锐, 王秉中, 丁帅, 龚志双 2016 物理学报 65 204102]

    [9]

    Feng J, Liao C, Zhang Q H, Sheng N, Zhou H J 2014 Acta Phys. Sin. 63 134101 (in Chinese) [冯菊, 廖成, 张青洪, 盛楠, 周海京 2014 物理学报 63 134101]

    [10]

    Francisco P R, Juan V V, Pablo P, Francisco L V, Rafael L B, Miguel A L G 2016 Sensors-Basel 6 1

    [11]

    Lerosey G, de Rosny J, Tourin A, Derode A, Montaldo G 2004 Phys. Rev. Lett. 92 1

    [12]

    Zhang G M 2013 M. S. Dissertation (Chengdu: University of Electronic Science and Technology) (in Chinese) [张光旻 2013 硕士学位论文 (成都: 电子科技大学)]

    [13]

    Alves H, Souza R D, Debbah M, Bennis M 2012 IEEE Signal Process. Lett. 19 372

    [14]

    Yang N, Suraweera H A, Collings I B, Yuen C 2013 IEEE Trans. Inf. Forensics Security 8 254

    [15]

    Tran D D, Ha D B, Tran H V, Hong E K 2015 Iete J. Res. 61 363

    [16]

    Rahmanpour A, Vakili V T, Razavizadeh S M 2017 Wireless Pers. Commun. 95 1533

    [17]

    Zhang L, Zhang H, Wu D, Yuan D 2015 IEEE Global Communications Conference San Diego, CA, USA, Dec. 6-10, 2015 p1

    [18]

    Wang W, Teh K C, Li K H 2017 IEEE Trans. Inf. Forensics Security 12 1470

    [19]

    Alves H, Souza R D, Debbah M, Bennis M 2012 IEEE Signal Process. Lett. 19 372

    [20]

    Tran D D, Ha D B, Tranha V, Hong E K 2015 Iete J. Res. 61 363

    [21]

    Cao W, Lei J, Liu W, Li X T 2014 Communications Security Conference Beijing, China, May 22-24, 2014 p1

    [22]

    Tran V T, Ha D B, Tran D D 2014 Computing, Management and Telecommunications Da Nang, Vietnam April 27-29, 2014 p70

    [23]

    Amirzadeh A, Taieb M H, Chouinard J Y 2017 Canadian Workshop on Information Theory Quebec City, QC, Canada June 11-14, 2017 p1

    [24]

    Han F, Yang Y H, Wang B B, Wu Y L, Rayliu K J 2012 IEEE Trans. Commun. 60 1953

    [25]

    Feng Y, Hou X Y, Wei H, Zhu Y, Gao L 2014 Computer Technol. Develop. 12 146 (in Chinese) [冯元, 侯晓赟, 魏浩, 朱艳, 高磊 2014 计算机技术与发展 12 146]

    [26]

    Simon M, Alouini M 2005 Digital Communication over Fading Channels of Second Order (Hoboken: Wiley-Interscience) pp17-43

    [27]

    Lei W J, Lin X Z, Yang X Y, Xie X Z 2016 JEIT 38 2887 (in Chinese) [雷维嘉, 林秀珍, 杨小燕, 谢显中 2016 电子与信息学报 38 2887]

    [28]

    Wang B, Wu Y, Han F, Yang Y H, Liu K J R 2011 IEEE J. Sel. Area. Commun. 29 1698

    [29]

    Zhao L K 2013 M. S. Dissertation (Zhengzhou: The PLA Information Engineering University) (in Chinese) [赵刘可 2013 硕士学位论文 (郑州: 解放军信息工程大学)]

    [30]

    Emami M, Vu M, Hansen J, Paulraj A J, Papanicolaou G 2004 Signals, Systems and Computers Pacific Grove, CA, USA, USA, Nov. 7-10, 2004 p218

    [31]

    Moose P H 1994 IEEE Trans. Common. 42 2908

    [32]

    Lee J, Lou H L, Toumpakaris D, Cioffi J M 2006 IEEE Trans. Wireless Commun. 5 3360

  • [1]

    Zhao D S, Yue W J, Yu M, Zhang S X 2012 Acta Phys. Sin. 61 074102 (in Chinese) [赵德双, 岳文君, 余敏, 张升学 2012 物理学报 61 074102]

    [2]

    Ding S, Wang B Z, Ge G D, Wang D, Zhao D S 2011 Acta Phys. Sin. 60 104101 (in Chinese) [丁帅, 王秉中, 葛广顶, 王多, 赵德双 2011 物理学报 60 104101]

    [3]

    Chen Y, Wang B, Han Y, Lai H Q, Safar Z, Liu K J R 2016 IEEE Signal Process. Mag. 33 17

    [4]

    Wang B Z, Zang R, Zhou H C 2013 J. Microwaves 29 22 (in Chinese) [王秉中, 臧锐, 周洪澄 2013 微波学报 29 22]

    [5]

    Chen Y M, Wang B Z, Ge G D 2012 Acta Phys. Sin. 61 024101 (in Chinese) [陈英明, 王秉中, 葛广顶 2012 物理学报 61 024101]

    [6]

    Ge G D, Wang B Z, Huang H Y, Zheng G 2009 Acta Phys. Sin. 58 8249 (in Chinese) [葛广顶, 王秉中, 黄海燕, 郑罡 2009 物理学报 58 8249]

    [7]

    Nardis L D, Fiorina J, Panaitopol D, Benedetto M G D 2013 Telecommun. Syst. 52 1145

    [8]

    Zang R, Wang B Z, Ding S, Gong Z S 2016 Acta Phys. Sin. 65 204102 (in Chinese) [臧锐, 王秉中, 丁帅, 龚志双 2016 物理学报 65 204102]

    [9]

    Feng J, Liao C, Zhang Q H, Sheng N, Zhou H J 2014 Acta Phys. Sin. 63 134101 (in Chinese) [冯菊, 廖成, 张青洪, 盛楠, 周海京 2014 物理学报 63 134101]

    [10]

    Francisco P R, Juan V V, Pablo P, Francisco L V, Rafael L B, Miguel A L G 2016 Sensors-Basel 6 1

    [11]

    Lerosey G, de Rosny J, Tourin A, Derode A, Montaldo G 2004 Phys. Rev. Lett. 92 1

    [12]

    Zhang G M 2013 M. S. Dissertation (Chengdu: University of Electronic Science and Technology) (in Chinese) [张光旻 2013 硕士学位论文 (成都: 电子科技大学)]

    [13]

    Alves H, Souza R D, Debbah M, Bennis M 2012 IEEE Signal Process. Lett. 19 372

    [14]

    Yang N, Suraweera H A, Collings I B, Yuen C 2013 IEEE Trans. Inf. Forensics Security 8 254

    [15]

    Tran D D, Ha D B, Tran H V, Hong E K 2015 Iete J. Res. 61 363

    [16]

    Rahmanpour A, Vakili V T, Razavizadeh S M 2017 Wireless Pers. Commun. 95 1533

    [17]

    Zhang L, Zhang H, Wu D, Yuan D 2015 IEEE Global Communications Conference San Diego, CA, USA, Dec. 6-10, 2015 p1

    [18]

    Wang W, Teh K C, Li K H 2017 IEEE Trans. Inf. Forensics Security 12 1470

    [19]

    Alves H, Souza R D, Debbah M, Bennis M 2012 IEEE Signal Process. Lett. 19 372

    [20]

    Tran D D, Ha D B, Tranha V, Hong E K 2015 Iete J. Res. 61 363

    [21]

    Cao W, Lei J, Liu W, Li X T 2014 Communications Security Conference Beijing, China, May 22-24, 2014 p1

    [22]

    Tran V T, Ha D B, Tran D D 2014 Computing, Management and Telecommunications Da Nang, Vietnam April 27-29, 2014 p70

    [23]

    Amirzadeh A, Taieb M H, Chouinard J Y 2017 Canadian Workshop on Information Theory Quebec City, QC, Canada June 11-14, 2017 p1

    [24]

    Han F, Yang Y H, Wang B B, Wu Y L, Rayliu K J 2012 IEEE Trans. Commun. 60 1953

    [25]

    Feng Y, Hou X Y, Wei H, Zhu Y, Gao L 2014 Computer Technol. Develop. 12 146 (in Chinese) [冯元, 侯晓赟, 魏浩, 朱艳, 高磊 2014 计算机技术与发展 12 146]

    [26]

    Simon M, Alouini M 2005 Digital Communication over Fading Channels of Second Order (Hoboken: Wiley-Interscience) pp17-43

    [27]

    Lei W J, Lin X Z, Yang X Y, Xie X Z 2016 JEIT 38 2887 (in Chinese) [雷维嘉, 林秀珍, 杨小燕, 谢显中 2016 电子与信息学报 38 2887]

    [28]

    Wang B, Wu Y, Han F, Yang Y H, Liu K J R 2011 IEEE J. Sel. Area. Commun. 29 1698

    [29]

    Zhao L K 2013 M. S. Dissertation (Zhengzhou: The PLA Information Engineering University) (in Chinese) [赵刘可 2013 硕士学位论文 (郑州: 解放军信息工程大学)]

    [30]

    Emami M, Vu M, Hansen J, Paulraj A J, Papanicolaou G 2004 Signals, Systems and Computers Pacific Grove, CA, USA, USA, Nov. 7-10, 2004 p218

    [31]

    Moose P H 1994 IEEE Trans. Common. 42 2908

    [32]

    Lee J, Lou H L, Toumpakaris D, Cioffi J M 2006 IEEE Trans. Wireless Commun. 5 3360

  • [1] 安腾远, 丁霄. 基于角谱域和时间反演的任意均匀场的生成方法. 物理学报, 2023, 72(18): 180201. doi: 10.7498/aps.72.20230418
    [2] 安腾远, 丁霄, 王秉中. 基于时间反演技术的复杂天线罩辐射波束畸变纠正. 物理学报, 2023, 72(3): 030401. doi: 10.7498/aps.72.20221767
    [3] 闫轶著, 丁帅, 韩旭, 王秉中. 基于信道处理的时间反演幅度可调控多目标聚焦方法. 物理学报, 2023, 72(16): 164101. doi: 10.7498/aps.72.20230547
    [4] 陆希成, 邱扬, 田锦, 汪海波, 江凌, 陈鑫. 基于多径信道模型研究时间反演腔的反演特性. 物理学报, 2022, 71(2): 024101. doi: 10.7498/aps.71.20210701
    [5] 陆希成, 邱扬, 田锦, 汪海波, 江凌, 陈鑫. 基于多径信道模型研究时间反演腔的反演特性. 物理学报, 2021, (): . doi: 10.7498/aps.70.20210701
    [6] 陈传升, 王秉中, 王任. 基于时间反演技术的电磁器件端口场与内部场转换方法. 物理学报, 2021, 70(7): 070201. doi: 10.7498/aps.70.20201682
    [7] 院琳, 杨雪松, 王秉中. 基于经验知识遗传算法优化的神经网络模型实现时间反演信道预测. 物理学报, 2019, 68(17): 170503. doi: 10.7498/aps.68.20190327
    [8] 张洪波, 张希仁. 用于实现散射介质中时间反演的数字相位共轭的相干性. 物理学报, 2018, 67(5): 054201. doi: 10.7498/aps.67.20172308
    [9] 龚志双, 王秉中, 王任, 臧锐, 王晓华. 基于光栅结构的远场时间反演亚波长源成像. 物理学报, 2017, 66(4): 044101. doi: 10.7498/aps.66.044101
    [10] 陈秋菊, 姜秋喜, 曾芳玲, 宋长宝. 基于时间反演电磁波的稀疏阵列单频信号空间功率合成. 物理学报, 2015, 64(20): 204101. doi: 10.7498/aps.64.204101
    [11] 冯菊, 廖成, 张青洪, 盛楠, 周海京. 蒸发波导中的时间反演抛物方程定位法. 物理学报, 2014, 63(13): 134101. doi: 10.7498/aps.63.134101
    [12] 梁木生, 王秉中, 章志敏, 丁帅, 臧锐. 基于远场时间反演的亚波长天线阵列研究. 物理学报, 2013, 62(5): 058401. doi: 10.7498/aps.62.058401
    [13] 周洪澄, 王秉中, 丁帅, 欧海燕. 时间反演电磁波在金属丝阵列媒质中的超分辨率聚焦. 物理学报, 2013, 62(11): 114101. doi: 10.7498/aps.62.114101
    [14] 赵德双, 岳文君, 余敏, 张升学. 时间反演脉冲电磁波在双负材料中传播特性研究. 物理学报, 2012, 61(7): 074102. doi: 10.7498/aps.61.074102
    [15] 陈英明, 王秉中, 葛广顶. 微波时间反演系统的空间超分辨率机理. 物理学报, 2012, 61(2): 024101. doi: 10.7498/aps.61.024101
    [16] 章志敏, 王秉中, 葛广顶. 一种用于时间反演通信的亚波长天线阵列设计. 物理学报, 2012, 61(5): 058402. doi: 10.7498/aps.61.058402
    [17] 丁帅, 王秉中, 葛广顶, 王多, 赵德双. 基于时间透镜原理实现微波信号时间反演. 物理学报, 2012, 61(6): 064101. doi: 10.7498/aps.61.064101
    [18] 章志敏, 王秉中, 葛广顶, 梁木生, 丁帅. 亚波长金属线阵中一维时间反演电磁波的聚焦机理研究. 物理学报, 2012, 61(9): 098401. doi: 10.7498/aps.61.098401
    [19] 丁帅, 王秉中, 葛广顶, 王多, 赵德双. 时间反演镜对时间反演电磁波聚焦特性影响因素的研究. 物理学报, 2011, 60(10): 104101. doi: 10.7498/aps.60.104101
    [20] 许祯镛. 随机海洋声信道下的噪声场时空相关函数. 物理学报, 1976, 25(3): 246-253. doi: 10.7498/aps.25.246
计量
  • 文章访问数:  7153
  • PDF下载量:  425
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-27
  • 修回日期:  2017-12-07
  • 刊出日期:  2018-03-05

/

返回文章
返回