搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧分压对Ni/HfOx/TiN阻变存储单元阻变特性的影响

张志超 王芳 吴仕剑 李毅 弭伟 赵金石 张楷亮

引用本文:
Citation:

氧分压对Ni/HfOx/TiN阻变存储单元阻变特性的影响

张志超, 王芳, 吴仕剑, 李毅, 弭伟, 赵金石, 张楷亮

Influneces of different oxygen partial pressures on switching properties of Ni/HfOx/TiN resistive switching devices

Zhang Zhi-Chao, Wang Fang, Wu Shi-Jian, Li Yi, Mi Wei, Zhao Jin-Shi, Zhang Kai-Liang
PDF
导出引用
  • 采用射频磁控溅射的方法,基于不同氧分压制备的氧化铪构建了Ni/HfOx/TiN结构阻变存储单元.研究发现,随着氧分压的增加,薄膜表面粗糙度略有降低;另一方面,阻变单元功耗降低,循环耐受性能可达103次,且转变电压分布的一致性得到改善.结合电流-电压曲线线性拟合结果及外加温度测试探究了器件的转变机理,得出在低阻态的传导机理为欧姆传导机理,在高阻态的传导机理为肖特基发射机理,并根据氧空位导电细丝理论,对高低阻态的阻变机理进行了详细的理论分析.
    The HfOx-based resistive random access memory (RRAM) has been extensively investigated as one of the emerging nonvolatile memory (NVM) candidates due to its excellent memory performance and compatibility with CMOS process. In this study, the influences of deposition ambient, especially the oxygen partial pressure during thin film sputtering, on the resistive switching characteristics are discussed in detail for possible nonvolatile memory applications. The Ni/HfOx/TiN RRAMs are fabricated, and the HfOx films with different oxygen content are deposited by a radio frequency magnetron sputtering at room temperature under different oxygen partial pressures. The oxygen partial pressures in the sputter deposition process are 2%, 4% and 6% relative to engineer oxygen content in the HfOx film. Current-voltage (I-V) measurements, X-ray photoelectron spectroscopy, and atomic force microscopy are performed to explain the possible nature of the stable resistive switching phenomenon. Through the current-voltage measurement, typical resistive switching behavior is observed in Ni/HfOx/TiN device cells. It is found that with the increase of the oxygen partial pressure during the preparation of HfOx films, the stoichiometric ratio of O in the film is improved, the root mean square (RMS) of the surface roughness of the film slightly decreases due to the slower deposition rate under a higher oxygen partial pressure, and the high resistance state (HRS) current decreases. In addition, by controlling the oxygen content of the device, the endurance performance of the device is improved, which reaches up to 103 under a 6% oxygen partial pressure. The HfOx films prepared at a higher oxygen partial pressure supply enough oxygen ions to preserve the switching effect. As the oxygen partial pressure increases, the uniformity of the switching voltage is improved, which can be attributed to the fact that better oxidation prevents the point defects (oxygen vacancies) from aggregating into extended defects. Through the linear fitting and temperature test, it is found that the conduction mechanism of Ni/HfOx/TiN RRAM device cells in low resistance state is an ohmic conduction mechanism, while in high resistance state it is a Schottky emission mechanism. The interface between TE and the oxide layer (HfOx) is expected to influence the resistive switching phenomenon. The activation energy of the device is investigated based on the Arrhenius plots in HRS. A switching model is proposed according to the theory of oxygen vacancy conductive filament. Furthermore, the self-compliance behavior is found and explained.
      通信作者: 王芳, fwang75@163.com;kailiang_zhang@163.com ; 张楷亮, fwang75@163.com;kailiang_zhang@163.com
    • 基金项目: 国家重点研发计划(批准号:2017YFB0405600)和天津市自然科学基金(批准号:17JCYBJC16100,17JCZDJC31700)资助的课题.
      Corresponding author: Wang Fang, fwang75@163.com;kailiang_zhang@163.com ; Zhang Kai-Liang, fwang75@163.com;kailiang_zhang@163.com
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFB0405600) and the Tianjin Natural Science Foundation, China (Grant Nos. 17JCYBJC16100, 17JCZDJC31700).
    [1]

    Lelmini D 2016 Semicond. Sci. Technol. 31 063002

    [2]

    Chang T C, Chang K C, Tsai T M, Chu T J, Sze S M 2016 Mater. Today 19 254

    [3]

    Han S T, Zhou Y, Roy V A 2013 Adv. Mater. 25 5425

    [4]

    Huang Y, Shen Z H, Wu Y, Wang X Q, Zhang S F, Shi X Q, Zeng H B 2016 RSC Adv. 6 17867

    [5]

    Chen R, Zou L W, Wang J Y, Chen C J, Shao X L, Jiang H, Zhang K L, L L R, Zhao J S 2014 Acta Phys. Sin. 63 067202 (in Chinese) [陈然, 周立伟, 王建云, 陈长军, 绍兴隆, 蒋浩, 张楷亮, 吕联荣, 赵金石 2014 物理学报 63 067202]

    [6]

    Shang J, Xue W H, Ji Z H, Liu G, Niu X H, Yi X H, Pan L, Zhan Q F, Xu X H, Li R W 2017 Nanoscale 9 7037

    [7]

    Park K, Lee J S 2016 Sci. Rep. 6 23069

    [8]

    Chen Y Y, Pourtois G, Adelmann C, Goux L, Govoreanu B, Degreave R, Jurczak M, Kittl J A, Groeseneken G, Wouters D J 2012 Appl. Phys. Lett. 100 113513

    [9]

    Kim W, Menzel S, Wouters D J, Guo Y Z, Robertson J, Roesgen B, Waser R, Rana V 2016 Nanoscale 8 17774

    [10]

    Jiang R, Du X H, Han Z Y, Sun D W 2015 Acta Phys. Sin. 64 207302 (in Chinese) [蒋然, 杜翔浩, 韩祖银, 孙登维 2015 物理学报 64 207302]

    [11]

    Yan Z B, Liu J M 2013 Sci. Rep. 3 2482

    [12]

    Hao A, Ismail M, He S, Qin N, Huang W H, Wu J, Bao D H 2018 J. Alloys Compd. 732 573

    [13]

    Ito D, Hamada Y, Otsuka S, Shimizu T, Shingubara S 2015 Jpn. J. Appl. Phys. 54 06FH11

    [14]

    Pang H, Deng N 2014 Acta Phys. Sin. 63 147301 (in Chinese) [庞华, 邓宁 2014 物理学报 63 147301]

    [15]

    Jiang R, Xie E Q, Wang Z F 2016 Appl. Phys. Lett. 89 142907

    [16]

    Bousoulas P, Michelakaki I, Tsoukalas D 2014 J. Appl. Phys. 115 034516

    [17]

    Jabeen S, Ismail M, Rana M A, Ahmed E 2017 Mater. Res. Express 4 056401

    [18]

    Wang X J, Hu C, Song Y L, Zhao X F, Zhang L L, L Z, Wang Y, Liu Z G, Wang Y, Zhang Y, Sui Y, Song B 2016 Sci. Rep. 6 30335

    [19]

    Fang Z, Yu H Y, Liu W J, Wang Z R, Tran X A, Gao B, Kang J F 2010 IEEE Electron Device Lett. 31 476

    [20]

    Alamgir Z, Beckmann K, Holt J, Cady N C 2017 Appl. Phys. Lett. 111 063111

    [21]

    Mahapatra R, Maji S, Horsfall A B, Wright N G 2015 Microelectron. Eng. 138 118

    [22]

    Shao X L, Zhou L W, Yoon K J, Jiang H, Zhao J S, Zhang K L, Yoo S, Hwang C S 2015 Nanoscale 7 11063

    [23]

    Puglisi F M, Qafa A, Pavan P 2015 IEEE Electron Device Lett. 36 244

    [24]

    Kondaiah P, Shaik H, Rao G M 2015 Electron. Mater. Lett. 11 592

  • [1]

    Lelmini D 2016 Semicond. Sci. Technol. 31 063002

    [2]

    Chang T C, Chang K C, Tsai T M, Chu T J, Sze S M 2016 Mater. Today 19 254

    [3]

    Han S T, Zhou Y, Roy V A 2013 Adv. Mater. 25 5425

    [4]

    Huang Y, Shen Z H, Wu Y, Wang X Q, Zhang S F, Shi X Q, Zeng H B 2016 RSC Adv. 6 17867

    [5]

    Chen R, Zou L W, Wang J Y, Chen C J, Shao X L, Jiang H, Zhang K L, L L R, Zhao J S 2014 Acta Phys. Sin. 63 067202 (in Chinese) [陈然, 周立伟, 王建云, 陈长军, 绍兴隆, 蒋浩, 张楷亮, 吕联荣, 赵金石 2014 物理学报 63 067202]

    [6]

    Shang J, Xue W H, Ji Z H, Liu G, Niu X H, Yi X H, Pan L, Zhan Q F, Xu X H, Li R W 2017 Nanoscale 9 7037

    [7]

    Park K, Lee J S 2016 Sci. Rep. 6 23069

    [8]

    Chen Y Y, Pourtois G, Adelmann C, Goux L, Govoreanu B, Degreave R, Jurczak M, Kittl J A, Groeseneken G, Wouters D J 2012 Appl. Phys. Lett. 100 113513

    [9]

    Kim W, Menzel S, Wouters D J, Guo Y Z, Robertson J, Roesgen B, Waser R, Rana V 2016 Nanoscale 8 17774

    [10]

    Jiang R, Du X H, Han Z Y, Sun D W 2015 Acta Phys. Sin. 64 207302 (in Chinese) [蒋然, 杜翔浩, 韩祖银, 孙登维 2015 物理学报 64 207302]

    [11]

    Yan Z B, Liu J M 2013 Sci. Rep. 3 2482

    [12]

    Hao A, Ismail M, He S, Qin N, Huang W H, Wu J, Bao D H 2018 J. Alloys Compd. 732 573

    [13]

    Ito D, Hamada Y, Otsuka S, Shimizu T, Shingubara S 2015 Jpn. J. Appl. Phys. 54 06FH11

    [14]

    Pang H, Deng N 2014 Acta Phys. Sin. 63 147301 (in Chinese) [庞华, 邓宁 2014 物理学报 63 147301]

    [15]

    Jiang R, Xie E Q, Wang Z F 2016 Appl. Phys. Lett. 89 142907

    [16]

    Bousoulas P, Michelakaki I, Tsoukalas D 2014 J. Appl. Phys. 115 034516

    [17]

    Jabeen S, Ismail M, Rana M A, Ahmed E 2017 Mater. Res. Express 4 056401

    [18]

    Wang X J, Hu C, Song Y L, Zhao X F, Zhang L L, L Z, Wang Y, Liu Z G, Wang Y, Zhang Y, Sui Y, Song B 2016 Sci. Rep. 6 30335

    [19]

    Fang Z, Yu H Y, Liu W J, Wang Z R, Tran X A, Gao B, Kang J F 2010 IEEE Electron Device Lett. 31 476

    [20]

    Alamgir Z, Beckmann K, Holt J, Cady N C 2017 Appl. Phys. Lett. 111 063111

    [21]

    Mahapatra R, Maji S, Horsfall A B, Wright N G 2015 Microelectron. Eng. 138 118

    [22]

    Shao X L, Zhou L W, Yoon K J, Jiang H, Zhao J S, Zhang K L, Yoo S, Hwang C S 2015 Nanoscale 7 11063

    [23]

    Puglisi F M, Qafa A, Pavan P 2015 IEEE Electron Device Lett. 36 244

    [24]

    Kondaiah P, Shaik H, Rao G M 2015 Electron. Mater. Lett. 11 592

  • [1] 李伟, 朱慧文, 孙彤, 屈文山, 李建刚, 杨辉, 高志翔, 施薇, 魏斌, 王华. 基于1, 2 - 二氰基苯/聚合物复合材料的高耐久性有机阻变存储器. 物理学报, 2023, 72(4): 048501. doi: 10.7498/aps.72.20221507
    [2] 何霄, 肖小舟, 何滨, 薛平, 肖嘉莹. 基于光声泵浦成像的氧分压测量定量分析. 物理学报, 2023, 72(21): 218101. doi: 10.7498/aps.72.20231041
    [3] 王英, 黄慧香, 黄香林, 郭婷婷. 光电协同调控下HfOx基阻变存储器的阻变特性. 物理学报, 2023, 72(19): 197201. doi: 10.7498/aps.72.20230797
    [4] 周正, 黄鹏, 康晋锋. 基于非挥发存储器的存内计算技术. 物理学报, 2022, 71(14): 148507. doi: 10.7498/aps.71.20220397
    [5] 朱茂聪, 邵雅洁, 周静, 陈文, 王志青, 田晶. 铌掺杂锆钛酸铅铁电薄膜调控CuInS2量子点的阻变性能. 物理学报, 2022, 71(20): 207301. doi: 10.7498/aps.71.20220911
    [6] 龚少康, 周静, 王志青, 朱茂聪, 沈杰, 吴智, 陈文. 尺寸调控SnO2量子点的阻变性能及调控机理. 物理学报, 2021, 70(19): 197301. doi: 10.7498/aps.70.20210608
    [7] 曾凡菊, 谭永前, 唐孝生, 张小梅, 尹海峰. 非铅卤素钙钛矿及其阻变性能研究进展. 物理学报, 2021, 70(15): 157301. doi: 10.7498/aps.70.20210065
    [8] 郭家俊, 董静雨, 康鑫, 陈伟, 赵旭. 过渡金属元素X(X=Mn,Fe,Co,Ni)掺杂对ZnO基阻变存储器性能的影响. 物理学报, 2018, 67(6): 063101. doi: 10.7498/aps.67.20172459
    [9] 代月花, 潘志勇, 陈真, 王菲菲, 李宁, 金波, 李晓风. 基于HfO2的阻变存储器中Ag导电细丝方向和浓度的第一性原理研究. 物理学报, 2016, 65(7): 073101. doi: 10.7498/aps.65.073101
    [10] 朱乐永, 高娅娜, 张建华, 李喜峰. 溶胶凝胶法制备以HfO2为绝缘层和ZITO为有源层的高迁移率薄膜晶体管. 物理学报, 2015, 64(16): 168501. doi: 10.7498/aps.64.168501
    [11] 蒋然, 杜翔浩, 韩祖银, 孙维登. Ti/HfO2/Pt阻变存储单元中的氧空位聚簇分布. 物理学报, 2015, 64(20): 207302. doi: 10.7498/aps.64.207302
    [12] 庞华, 邓宁. Ni/HfO2/Pt阻变单元特性与机理的研究. 物理学报, 2014, 63(14): 147301. doi: 10.7498/aps.63.147301
    [13] 刘东青, 程海峰, 朱玄, 王楠楠, 张朝阳. 忆阻器及其阻变机理研究进展. 物理学报, 2014, 63(18): 187301. doi: 10.7498/aps.63.187301
    [14] 陈然, 周立伟, 王建云, 陈长军, 邵兴隆, 蒋浩, 张楷亮, 吕联荣, 赵金石. 基于Cu/SiOx/Al结构的阻变存储器多值特性及机理的研究. 物理学报, 2014, 63(6): 067202. doi: 10.7498/aps.63.067202
    [15] 韦晓莹, 胡明, 张楷亮, 王芳, 刘凯. 氧化钒薄膜的微结构及阻变特性研究. 物理学报, 2013, 62(4): 047201. doi: 10.7498/aps.62.047201
    [16] 容佳玲, 陈赟汉, 周洁, 张雪, 王立, 曹进. 基于ITO/聚甲基丙烯酸甲酯/Al的有机阻变存储器SPICE仿真. 物理学报, 2013, 62(22): 228502. doi: 10.7498/aps.62.228502
    [17] 杨金, 周茂秀, 徐太龙, 代月花, 汪家余, 罗京, 许会芳, 蒋先伟, 陈军宁. 阻变存储器复合材料界面及电极性质研究. 物理学报, 2013, 62(24): 248501. doi: 10.7498/aps.62.248501
    [18] 岑忞, 章岳光, 陈卫兰, 顾培夫. 沉积速率和氧分压对HfO2薄膜残余应力的影响. 物理学报, 2009, 58(10): 7025-7029. doi: 10.7498/aps.58.7025
    [19] 赖云锋, 冯 洁, 乔保卫, 凌 云, 林殷茵, 汤庭鳌, 蔡炳初, 陈邦明. 氮掺杂Ge2Sb2Te5相变存储器的多态存储功能. 物理学报, 2006, 55(8): 4347-4352. doi: 10.7498/aps.55.4347
    [20] 王利霞, 李建平, 何秀丽, 高晓光. 二氧化钒薄膜的低温制备及其性能研究. 物理学报, 2006, 55(6): 2846-2851. doi: 10.7498/aps.55.2846
计量
  • 文章访问数:  6845
  • PDF下载量:  257
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-10
  • 修回日期:  2017-12-05
  • 刊出日期:  2018-03-05

/

返回文章
返回