搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

扫描电子显微镜法测定金属衬底上石墨烯薄膜的覆盖度

陈彩云 刘进行 张小敏 李金龙 任玲玲 董国材

引用本文:
Citation:

扫描电子显微镜法测定金属衬底上石墨烯薄膜的覆盖度

陈彩云, 刘进行, 张小敏, 李金龙, 任玲玲, 董国材

Coverage measurement of graphene film on metallic substrate using scanning electron microscopy

Chen Cai-Yun, Liu Jin-Xing, Zhang Xiao-Min, Li Jin-Long, Ren Ling-Ling, Dong Guo-Cai
PDF
导出引用
  • 利用化学气相沉积法生长在金属衬底上的石墨烯薄膜,由于其尺寸的可控性和转移的便利性,被广泛用作各种透明电极.石墨烯薄膜的方块电阻是衡量其品质的重要指标之一,而石墨烯覆盖完全是保证薄膜拥有优良导电性能的基本前提.本文通过研究评估不确定度的分量,提出利用扫描电子显微镜像素计算微区和宏观覆盖度的方法.考虑到石墨烯薄膜覆盖区域与未覆盖区域边界的确定,以及晶畴数目的选取这两个因素对覆盖度测定造成的误差.通过微区有效扫描电子显微镜图像的确定、宏观石墨烯薄膜有效扫描电子显微镜图像的测量数目以及宏观石墨烯薄膜覆盖均匀性的表达,系统研究了化学气相沉积法生长在金属衬底上的石墨烯薄膜的微区覆盖度、宏观覆盖度和覆盖均匀性.该方法通过获得有限次微区扫描电子显微镜图像,不仅可以计算宏观石墨烯薄膜的覆盖度,还可以给出覆盖均匀性,既节省了测量时间,同时也能保证测量有效性.
    Graphene films grown on metallic substrates by chemical vapor deposition have wide potential applications, such as serving as transparent electrodes, transistors, sensors, etc. The coverage of graphene on metal surface can influence many performance parameters, such as square resistance and transparence, after it has been transferred to other substrates. As most of the performance parameters cannot be measured while graphene is still on the metal, it is very useful to evaluate the coverage of graphene before further actions. In this paper, we present a method to measure the coverage of graphene on metal by using scanning electron microscopy and image processing software. We also calculate and measure the uncertainty of the measured coverage. There are two main factors, namely the determination of the boundary between the covered areas and the uncovered areas, and the number of the graphene islands or vacancy islands in view, which can bring uncertainty to the coverage. The former factor raises the uncertainty of the coverage while the number of graphene (vacancy) islands in view is higher, because the more the islands in view, the smaller the islands are, therefore the total boundaries become more. The latter factor reduces uncertainty with the number of islands increasing, because of the quantum fluctuation. The uncertainty of the latter factor is proportional to 1/√N, where N is the number of islands in view. As we can see, the number of islands in view is the key parameter to balance the two factors. We measure the graphene coverage with different graphene islands in view, and also measure the uncertainty by using the statistics knowledge. Meanwhile, we also build a model to calculate the uncertainty under different numbers of islands in view. The experiments and the calculations accord with each other reasonably well. By these carefully modeling and experimentations, we optimize and balance the two faces and suggest the number of islands in view to reduce the uncertainty of the measured coverage to a lowest value. The use of these measured data can ensure the accuracy of the graphene coverage measurement with minimal time cost.
      通信作者: 任玲玲, renll@nim.ac.cn;dongguocai@gcinno.com ; 董国材, renll@nim.ac.cn;dongguocai@gcinno.com
    • 基金项目: 国家重点基础研究发展计划(批准号:2016YFE0125200,2016YFF0204300)、国家自然科学基金(批准号:51402026)和江苏省自然科学基金(批准号:BK20130236)资助的课题.
      Corresponding author: Ren Ling-Ling, renll@nim.ac.cn;dongguocai@gcinno.com ; Dong Guo-Cai, renll@nim.ac.cn;dongguocai@gcinno.com
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2016YFE0125200, 2016YFF0204300), the National Natural Science Foundation of China (Grant No. 51402026), and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20130236).
    [1]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [2]

    Geim A K 2009 Science 324 1530

    [3]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [4]

    Hernandez Y, Nicolosi V, Lotya M, Blighe F M, Sun Z Y, De S, McGovern I T, Holland B, Byrne M, Gun’ko Y K, Boland J J, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari A C, Coleman J N 2008 Nat. Nanotechnol. 3 563

    [5]

    Park S, Ruoff R S 2009 Nat. Nanotechnol. 4 217

    [6]

    Berger C, Song Z M, Li X B, Wu X S, Brown N, Naud C, Mayou D, Li T B, Hass J, Marchenkov A N, Conrad E H, First P N, de Heer W A 2006 Science 312 1191

    [7]

    Emtsev K V, Bostwick A, Horn K, Jobst J, Kellogg G L, Ley L, McChesney J L, Ohta T, Reshanov S A, Rohrl J, Rotenberg E, Schmid A K, Waldmann D, Weber H B, Seyller T 2009 Nat. Mater. 8 203

    [8]

    Yu Q, Lian J, Siriponglert S, Li H, Chen Y P, Pei S S 2008 Appl. Phys. Lett. 93 113103

    [9]

    Reina A, Jia X T, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus M S, Kong J 2009 Nano Lett. 9 3087

    [10]

    Sutter P W, Flege J I, Sutter E A 2008 Nat. Mater. 7 406

    [11]

    Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H 2009 Nature 457 706

    [12]

    Li X S, Cai W W, An J, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312

    [13]

    Levendorf M P, Ruiz-Vargas C S, Garg S, Park J 2009 Nano Lett. 9 4479

    [14]

    Lee Y, Bae S, Jang H, Jang S, Zhu S E, Sim S H, Song Y I, Hong B H, Ahn J H 2010 Nano Lett. 10 490

    [15]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K 2008 Science 320 1308

    [16]

    Wang X, Zhi L, Mllen K 2008 Nano Lett. 8 323

    [17]

    Blake P, Brimicombe P D, Nair R R, Booth T J, Jiang D, Schedin F, Ponomarenko L A, Morozov S V, Gleeson H F, Hill E W, Geim A K, Novoselov K S 2008 Nano Lett. 8 1704

    [18]

    Li X, Zhang G, Bai X, Sun X, Wang X, Wang E, Dai H 2008 Nature Nanotechnol. 3 538

    [19]

    Becerril H A, Mao J, Liu Z, Stoltenberg R M, Bao Z, Chen Y 2008 ACS Nano 2 463

    [20]

    Huang P Y, Ruiz-Vargas C S, Zande A M, Whitney W S, Levendorf M P, Kevek J W, Garg S, Alden J S, Hustedt C J, Zhu Y, Park J, McEuen P L, Muller D A 2011 Nature 469 389

    [21]

    Tsen A W, Brown L, Levendorf M P, Ghahari F, Huang P Y, Havener R W, Ruiz-Vargas C S, Muller D A, Kim P, Park J 2012 Science 336 1143

    [22]

    Li X S, Zhu Y W, Cai W W, Borysiak M, Han B, Chen D, Piner R D, Colombo L, Ruoff R S 2009 Nano Lett. 9 4359

    [23]

    Zhao Z J, Shan Z F, Zhang C K, Li Q Y, Tian B, Huang Z Y, Lin W Y, Chen X P, Ji H X, Zhang W F, Cai W W 2015 Small 11 1418

    [24]

    Hao Y F, Bharathi M S, Wang L, Liu Y Y, Chen H, Nie S, Wang X H, Chou H, Tan C, Fallahazad B, Ramanarayan H, Magnuson C W, Tutuc E, Yakobson B I, McCarty K F, Zhang Y W, Kim P, Hone J, Colombo L, Ruoff R S 2013 Science 342 720

    [25]

    Wang H, Wang G Z, Bao P F, Yang S L, Zhu W, Xie X, Zhang W J 2012 J. Am. Chem. Soc. 134 3627

    [26]

    Dong G C, Frenken J W M 2013 ACS Nano 7 7028

  • [1]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [2]

    Geim A K 2009 Science 324 1530

    [3]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [4]

    Hernandez Y, Nicolosi V, Lotya M, Blighe F M, Sun Z Y, De S, McGovern I T, Holland B, Byrne M, Gun’ko Y K, Boland J J, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari A C, Coleman J N 2008 Nat. Nanotechnol. 3 563

    [5]

    Park S, Ruoff R S 2009 Nat. Nanotechnol. 4 217

    [6]

    Berger C, Song Z M, Li X B, Wu X S, Brown N, Naud C, Mayou D, Li T B, Hass J, Marchenkov A N, Conrad E H, First P N, de Heer W A 2006 Science 312 1191

    [7]

    Emtsev K V, Bostwick A, Horn K, Jobst J, Kellogg G L, Ley L, McChesney J L, Ohta T, Reshanov S A, Rohrl J, Rotenberg E, Schmid A K, Waldmann D, Weber H B, Seyller T 2009 Nat. Mater. 8 203

    [8]

    Yu Q, Lian J, Siriponglert S, Li H, Chen Y P, Pei S S 2008 Appl. Phys. Lett. 93 113103

    [9]

    Reina A, Jia X T, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus M S, Kong J 2009 Nano Lett. 9 3087

    [10]

    Sutter P W, Flege J I, Sutter E A 2008 Nat. Mater. 7 406

    [11]

    Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H 2009 Nature 457 706

    [12]

    Li X S, Cai W W, An J, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312

    [13]

    Levendorf M P, Ruiz-Vargas C S, Garg S, Park J 2009 Nano Lett. 9 4479

    [14]

    Lee Y, Bae S, Jang H, Jang S, Zhu S E, Sim S H, Song Y I, Hong B H, Ahn J H 2010 Nano Lett. 10 490

    [15]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K 2008 Science 320 1308

    [16]

    Wang X, Zhi L, Mllen K 2008 Nano Lett. 8 323

    [17]

    Blake P, Brimicombe P D, Nair R R, Booth T J, Jiang D, Schedin F, Ponomarenko L A, Morozov S V, Gleeson H F, Hill E W, Geim A K, Novoselov K S 2008 Nano Lett. 8 1704

    [18]

    Li X, Zhang G, Bai X, Sun X, Wang X, Wang E, Dai H 2008 Nature Nanotechnol. 3 538

    [19]

    Becerril H A, Mao J, Liu Z, Stoltenberg R M, Bao Z, Chen Y 2008 ACS Nano 2 463

    [20]

    Huang P Y, Ruiz-Vargas C S, Zande A M, Whitney W S, Levendorf M P, Kevek J W, Garg S, Alden J S, Hustedt C J, Zhu Y, Park J, McEuen P L, Muller D A 2011 Nature 469 389

    [21]

    Tsen A W, Brown L, Levendorf M P, Ghahari F, Huang P Y, Havener R W, Ruiz-Vargas C S, Muller D A, Kim P, Park J 2012 Science 336 1143

    [22]

    Li X S, Zhu Y W, Cai W W, Borysiak M, Han B, Chen D, Piner R D, Colombo L, Ruoff R S 2009 Nano Lett. 9 4359

    [23]

    Zhao Z J, Shan Z F, Zhang C K, Li Q Y, Tian B, Huang Z Y, Lin W Y, Chen X P, Ji H X, Zhang W F, Cai W W 2015 Small 11 1418

    [24]

    Hao Y F, Bharathi M S, Wang L, Liu Y Y, Chen H, Nie S, Wang X H, Chou H, Tan C, Fallahazad B, Ramanarayan H, Magnuson C W, Tutuc E, Yakobson B I, McCarty K F, Zhang Y W, Kim P, Hone J, Colombo L, Ruoff R S 2013 Science 342 720

    [25]

    Wang H, Wang G Z, Bao P F, Yang S L, Zhu W, Xie X, Zhang W J 2012 J. Am. Chem. Soc. 134 3627

    [26]

    Dong G C, Frenken J W M 2013 ACS Nano 7 7028

  • [1] 崔洋, 李静, 张林. 外加横向电场作用下石墨烯纳米带电子结构的密度泛函紧束缚计算. 物理学报, 2021, 70(5): 053101. doi: 10.7498/aps.70.20201619
    [2] 廖天军, 杨智敏, 林比宏. 基于电荷和热输运的石墨烯热电子器件性能优化. 物理学报, 2021, 70(22): 227901. doi: 10.7498/aps.70.20211110
    [3] 张玉响, 彭倚天, 郎浩杰. 基于原子力显微镜的石墨烯表面图案化摩擦调控. 物理学报, 2020, 69(10): 106801. doi: 10.7498/aps.69.20200124
    [4] 王晓, 黄生祥, 罗衡, 邓联文, 吴昊, 徐运超, 贺君, 贺龙辉. 镍层间掺杂多层石墨烯的电子结构及光吸收特性研究. 物理学报, 2019, 68(18): 187301. doi: 10.7498/aps.68.20190523
    [5] 秦志辉. 类石墨烯锗烯研究进展. 物理学报, 2017, 66(21): 216802. doi: 10.7498/aps.66.216802
    [6] 卢晓波, 张广宇. 石墨烯莫尔超晶格. 物理学报, 2015, 64(7): 077305. doi: 10.7498/aps.64.077305
    [7] 陈东海, 杨谋, 段后建, 王瑞强. 自旋轨道耦合作用下石墨烯pn结的电子输运性质. 物理学报, 2015, 64(9): 097201. doi: 10.7498/aps.64.097201
    [8] 刘梦溪, 张艳锋, 刘忠范. 石墨烯-六方氮化硼面内异质结构的扫描隧道显微学研究. 物理学报, 2015, 64(7): 078101. doi: 10.7498/aps.64.078101
    [9] 李晓娜, 郑月红, 李震, 王苗, 张坤, 董闯. 基于团簇模型设计的Cu-Cu12-[Mx/(12+x)Ni12/(12+x)]5 (M=Si, Cr, Cr+Fe) 合金抗高温氧化研究. 物理学报, 2014, 63(2): 028102. doi: 10.7498/aps.63.028102
    [10] 张玉萍, 刘陵玉, 陈琦, 冯志红, 王俊龙, 张晓, 张洪艳, 张会云. 具有分离门电抽运石墨烯中电子-空穴等离子体的冷却效应. 物理学报, 2013, 62(9): 097202. doi: 10.7498/aps.62.097202
    [11] 邓伟胤, 朱瑞, 邓文基. 有限尺寸石墨烯的电子态. 物理学报, 2013, 62(8): 087301. doi: 10.7498/aps.62.087301
    [12] 冉润欣, 范晓丽, 杨永良, 方小亮. 不同覆盖度下丙硫醇在Au(111)面吸附的理论研究. 物理学报, 2013, 62(22): 223101. doi: 10.7498/aps.62.223101
    [13] 刘江涛, 黄接辉, 肖文波, 胡爱荣, 王建辉. 栅极电势对强光场下石墨烯场效应管中电子隧穿的影响. 物理学报, 2012, 61(17): 177202. doi: 10.7498/aps.61.177202
    [14] 姚志东, 李炜, 高先龙. 点缺陷扶手型石墨烯量子点的电子性质研究. 物理学报, 2012, 61(11): 117105. doi: 10.7498/aps.61.117105
    [15] 康朝阳, 唐军, 李利民, 潘海斌, 闫文盛, 徐彭寿, 韦世强, 陈秀芳, 徐现刚. 不同极性6H-SiC表面石墨烯的制备及其电子结构的研究. 物理学报, 2011, 60(4): 047302. doi: 10.7498/aps.60.047302
    [16] 潘洪哲, 徐明, 陈丽, 孙媛媛, 王永龙. 单层正三角锯齿型石墨烯量子点的电子结构和磁性. 物理学报, 2010, 59(9): 6443-6449. doi: 10.7498/aps.59.6443
    [17] 罗传文. 对均匀的数学描述及其与混沌的关系. 物理学报, 2009, 58(6): 3788-3792. doi: 10.7498/aps.58.3788
    [18] 郭平生, 陈 婷, 曹章轶, 张哲娟, 陈奕卫, 孙 卓. 场致发射阴极碳纳米管的热化学气相沉积法低温生长. 物理学报, 2007, 56(11): 6705-6711. doi: 10.7498/aps.56.6705
    [19] 李海钧, 顾长志, 窦 艳, 李俊杰. 单根准直碳纳米纤维的场发射特性. 物理学报, 2004, 53(7): 2258-2262. doi: 10.7498/aps.53.2258
    [20] 冯 倩, 郝 跃, 张晓菊, 刘玉龙. SiC衬底上外延GaN:Mg材料特性研究. 物理学报, 2004, 53(2): 626-630. doi: 10.7498/aps.53.626
计量
  • 文章访问数:  6878
  • PDF下载量:  152
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-14
  • 修回日期:  2018-01-19
  • 刊出日期:  2018-04-05

/

返回文章
返回