搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

极化控制的双波段宽带红外吸收器研究

杨鹏 韩天成

引用本文:
Citation:

极化控制的双波段宽带红外吸收器研究

杨鹏, 韩天成

Polarization-controlled dual-band broadband infrared absorber

Yang Peng, Han Tian-Cheng
PDF
导出引用
  • 红外吸收器在红外隐身、辐射制冷、红外探测、传感器等方面有重要的应用前景.一维光栅型吸收器由于其结构简单、易于加工的优势备受关注,然而其不足之处是频带很窄,且只对一种极化有效.本文提出了一种基于简单一维周期结构的双波段宽带吸收器,对横磁波和横电波都有效,且吸波频段随入射波的极化方式而改变.该结构的基本单元由八个梯度排列的子单元构成,每个子单元由两层金属-介质双层膜垂直层叠组成.全波仿真结果表明,在1.68–2 μm波段,该结构对横磁波吸收超过90%,而对横电波吸收很小(小于6%);在3.8–3.9 μm波段,该结构对横电波吸收超过90%,而对横磁波吸收很小(小于5%).另外,该结构具有宽角度吸收特性,当入射角增大到60°时仍然能够保持较高的吸收率和较宽的吸收频带.
    As an important branch of metamaterial-based devices, metamaterial absorber (MA) has aroused great interest and made great progress in the past several years. By manipulating the magnetic resonance and the electric resonance simultaneously, the effective impedance of MA will match the free space impedance, thus resulting in a perfect absorption of incident waves. Due to the advantages of thin thickness, flexible design and tunable property, MA has been extensively studied at various frequencies, e. g. microwave frequency, THz, infrared frequency, and optical frequency. Infrared MA, having important applications in infrared stealth, infrared detection, radiative cooling, and sensors, receives more and more attention, especially for those absorbers based on easy-fabricated one-dimensional grating structure. However, such a grating-based absorber is usually workable in narrow band and effective only for transverse magnetic (TM) wave.In this paper, a dual-band broadband absorber is proposed based on the easy-fabricated grating structure. The basic unit of the proposed absorber consists of eight gradient subunits, each of which is composed of vertically cascaded two pairs of metal-dielectric bilayers. The as-designed absorber has perfect absorption for both TM and transverse electric (TE) waves. More importantly, the absorption band is different for different polarized wave, which provides more choices and greater flexibility for application. Full-wave simulation shows that the absorption of TM wave is above 90% from 1.68 μm to 2 μm, while the absorption of TE wave is very small (no more than 6%). The absorption of TE wave is above 90% from 3.8 to 3.9 μm, while the absorption of TM wave is very small (no more than 5%). In order to reveal the working principle of the proposed absorber, the electric-field distributions of the whole structure are calculated at different frequency, which demonstrates that the broadband absorption is achieved by exciting multiple resonant coupling. Furthermore, we investigate the performance of the proposed absorber in oblique incidence, and find that the designed absorber can exhibit a good absorption within a broad incident angle ranging from 0 to 60 degrees. It is worth noting that there is an absorption fracture band in the absorption spectrum of TM waves, which is because no resonance occurs in all subunits, resulting in almost no absorption.In conclusion, we have proposed a dual-band broadband absorber that demonstrates independent absorption of the TM waves and the waves in different bands, which has potential applications in thermal detectors and thermal emitters. The proposed scheme can be extended to microwave, THz, and even visible light band.
      通信作者: 韩天成, tchan123@swu.edu.cm
    • 基金项目: 国家自然科学基金(批准号:11304253)和中央高校基本科研业务费专项基金(批准号:XDJK2016A019)资助的课题.
      Corresponding author: Han Tian-Cheng, tchan123@swu.edu.cm
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11304253) and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. XDJK2016A019).
    [1]

    Watts C M, Liu X, Padilla W J 2012 Adv. Mater. 24 OP98

    [2]

    Liu N, Mesch M, Weiss T, Hentschel M, Giessen H 2010 Nano Lett. 10 2342

    [3]

    Li W, Valentine J 2014 Nano Lett. 14 3510

    [4]

    Shen L, Zhang B, Liu Z, Wang Z, Lin S, Dehdashti S, Li E, Chen H 2015 Adv. Opt. Mater. 3 1738

    [5]

    Raman A P, Anoma M A, Zhu L, Rephaeli E, Fan S 2014 Nature 515 540

    [6]

    Zhai Y, Ma Y, David S N, Zhao D, Lou R, Tan G, Yang R, Yin X 2017 Science 355 1062

    [7]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [8]

    Hao J, Wang J, Liu X L, Padilla W J, Zhou L, Qiu M 2010 Appl. Phys. Lett. 96 4184

    [9]

    Wang J, Chen Y, Hao J, Yan M, Qiu M 2011 J. Appl. Phys. 109 074510

    [10]

    Liu X, Starr T, Starr A F, Padilla W J 2010 Phys. Rev. Lett. 104 207403

    [11]

    Ding F, Dai J, Chen Y, Zhu J, Jin Y, Bozhevolnyi S I 2016 Sci. Rep. 6 39445

    [12]

    Luo M, Shen S, Zhou L, Wu S, Zhou Y, Chen L 2017 Opt. Express 25 16715

    [13]

    Wu J 2016 Opt. Mater. 62 47

    [14]

    Li L, L Z 2017 J. Appl. Phys. 122 055104

    [15]

    Zhu P, Guo L J 2012 Appl. Phys. Lett. 101 051105

    [16]

    Feng R, Ding W, Liu L, Chen L, Qiu J, Chen G 2014 Opt. Express 22 A335

    [17]

    Koechlin C, Bouchon P, Pardo F, Jaeck J, Lafosse X, Pelouard J L, Haidar R 2011 Appl. Phys. Lett. 99 241104

    [18]

    Cui Y, Xu J, Fung K H, Jin Y, Kumar A, He S, Fang N X 2011 Appl. Phys. Lett. 99 193

    [19]

    Cui Y, Fung K H, Xu J, Ma H, Jin Y, He S, Fang N X 2012 Nano Lett. 12 1443

    [20]

    Wu J, Zhou C, Yu J, Cao H, Li S, Jia W 2014 Opt. Commun. 329 38

    [21]

    Chern R L, Chen Y T, Lin H Y 2010 Opt. Express 18 19510

    [22]

    Feng R, Qiu J, Cao Y, Liu L, Ding W, Chen L 2015 Opt. Express 23 21023

    [23]

    Palik E D 1985 Handbook of Optical Constants of Solids (Manhattan:Academic Press) p189

    [24]

    Zhang K L, Hou Z L, Bi S, Fang H M 2017 Chin. Phys. B 26 127802

    [25]

    Qiu C W, Hao J, Qiu M, Zouhdi S 2012 Opt. Lett. 37 4955

    [26]

    Sakurai A, Zhao B, Zhang Z M 2014 J. Quant. Spectrosc. Radiat. Transfer 149 33

  • [1]

    Watts C M, Liu X, Padilla W J 2012 Adv. Mater. 24 OP98

    [2]

    Liu N, Mesch M, Weiss T, Hentschel M, Giessen H 2010 Nano Lett. 10 2342

    [3]

    Li W, Valentine J 2014 Nano Lett. 14 3510

    [4]

    Shen L, Zhang B, Liu Z, Wang Z, Lin S, Dehdashti S, Li E, Chen H 2015 Adv. Opt. Mater. 3 1738

    [5]

    Raman A P, Anoma M A, Zhu L, Rephaeli E, Fan S 2014 Nature 515 540

    [6]

    Zhai Y, Ma Y, David S N, Zhao D, Lou R, Tan G, Yang R, Yin X 2017 Science 355 1062

    [7]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [8]

    Hao J, Wang J, Liu X L, Padilla W J, Zhou L, Qiu M 2010 Appl. Phys. Lett. 96 4184

    [9]

    Wang J, Chen Y, Hao J, Yan M, Qiu M 2011 J. Appl. Phys. 109 074510

    [10]

    Liu X, Starr T, Starr A F, Padilla W J 2010 Phys. Rev. Lett. 104 207403

    [11]

    Ding F, Dai J, Chen Y, Zhu J, Jin Y, Bozhevolnyi S I 2016 Sci. Rep. 6 39445

    [12]

    Luo M, Shen S, Zhou L, Wu S, Zhou Y, Chen L 2017 Opt. Express 25 16715

    [13]

    Wu J 2016 Opt. Mater. 62 47

    [14]

    Li L, L Z 2017 J. Appl. Phys. 122 055104

    [15]

    Zhu P, Guo L J 2012 Appl. Phys. Lett. 101 051105

    [16]

    Feng R, Ding W, Liu L, Chen L, Qiu J, Chen G 2014 Opt. Express 22 A335

    [17]

    Koechlin C, Bouchon P, Pardo F, Jaeck J, Lafosse X, Pelouard J L, Haidar R 2011 Appl. Phys. Lett. 99 241104

    [18]

    Cui Y, Xu J, Fung K H, Jin Y, Kumar A, He S, Fang N X 2011 Appl. Phys. Lett. 99 193

    [19]

    Cui Y, Fung K H, Xu J, Ma H, Jin Y, He S, Fang N X 2012 Nano Lett. 12 1443

    [20]

    Wu J, Zhou C, Yu J, Cao H, Li S, Jia W 2014 Opt. Commun. 329 38

    [21]

    Chern R L, Chen Y T, Lin H Y 2010 Opt. Express 18 19510

    [22]

    Feng R, Qiu J, Cao Y, Liu L, Ding W, Chen L 2015 Opt. Express 23 21023

    [23]

    Palik E D 1985 Handbook of Optical Constants of Solids (Manhattan:Academic Press) p189

    [24]

    Zhang K L, Hou Z L, Bi S, Fang H M 2017 Chin. Phys. B 26 127802

    [25]

    Qiu C W, Hao J, Qiu M, Zouhdi S 2012 Opt. Lett. 37 4955

    [26]

    Sakurai A, Zhao B, Zhang Z M 2014 J. Quant. Spectrosc. Radiat. Transfer 149 33

  • [1] 王丹, 李九生, 郭风雷. 宽带吸收与极化转换可切换的太赫兹超表面. 物理学报, 2024, 73(14): 148701. doi: 10.7498/aps.73.20240525
    [2] 李磊, 支钰崧, 张茂林, 刘增, 张少辉, 马万煜, 许强, 沈高辉, 王霞, 郭宇锋, 唐为华. 关于Ga2O3/Al0.1Ga0.9N同型异质结的双波段、双模式紫外探测性能分析. 物理学报, 2023, 72(2): 027301. doi: 10.7498/aps.72.20221738
    [3] 宁仁霞, 黄旺, 王菲, 孙剑, 焦铮. 双明模耦合的双波段类电磁诱导透明研究. 物理学报, 2022, 71(1): 014201. doi: 10.7498/aps.71.20211312
    [4] 陈乐迪, 范仁浩, 刘雨, 唐贡惠, 马中丽, 彭茹雯, 王牧. 基于柔性超构材料宽带调控太赫兹波的偏振态. 物理学报, 2022, 71(18): 187802. doi: 10.7498/aps.71.20220801
    [5] 李海鹏, 吴潇, 丁海洋, 辛可为, 王光明. 基于复合超构表面的宽带圆极化双功能器件设计. 物理学报, 2021, 70(2): 027803. doi: 10.7498/aps.70.20201150
    [6] 宁仁霞, 黄旺, 王菲, 孙剑, 焦铮. 双明模耦合的双波段类电磁诱导透明研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211312
    [7] 周毅, 陈瑞, 陈雯洁, 马云贵. 空域模拟光学计算器件的研究进展. 物理学报, 2020, 69(15): 157803. doi: 10.7498/aps.69.20200283
    [8] 林月钗, 刘仿, 黄翊东. 基于超构材料的Cherenkov辐射. 物理学报, 2020, 69(15): 154103. doi: 10.7498/aps.69.20200260
    [9] 姚尧, 沈悦, 郝加明, 戴宁. 基于亚波长人工微结构的电磁波减反增透研究进展. 物理学报, 2019, 68(14): 147802. doi: 10.7498/aps.68.20190702
    [10] 权家琪, 圣宗强, 吴宏伟. 基于人工表面等离激元结构的全向隐身. 物理学报, 2019, 68(15): 154101. doi: 10.7498/aps.68.20190283
    [11] 徐进, 李荣强, 蒋小平, 王身云, 韩天成. 基于方形开口环的超宽带线性极化转换器. 物理学报, 2019, 68(11): 117801. doi: 10.7498/aps.68.20190267
    [12] 蒲明博, 王长涛, 王彦钦, 罗先刚. 衍射极限尺度下的亚波长电磁学. 物理学报, 2017, 66(14): 144101. doi: 10.7498/aps.66.144101
    [13] 马晓亮, 李雄, 郭迎辉, 赵泽宇, 罗先刚. 超构天线:原理、器件与应用. 物理学报, 2017, 66(14): 147802. doi: 10.7498/aps.66.147802
    [14] 邓俊鸿, 李贵新. 非线性光学超构表面. 物理学报, 2017, 66(14): 147803. doi: 10.7498/aps.66.147803
    [15] 龙洋, 任捷, 江海涛, 孙勇, 陈鸿. 超构材料中的光学量子自旋霍尔效应. 物理学报, 2017, 66(22): 227803. doi: 10.7498/aps.66.227803
    [16] 鲁磊, 屈绍波, 施宏宇, 张安学, 夏颂, 徐卓, 张介秋. 宽带透射吸收极化无关超材料吸波体. 物理学报, 2014, 63(2): 028103. doi: 10.7498/aps.63.028103
    [17] 耿辉, 刘建国, 张玉钧, 阚瑞峰, 许振宇, 姚路, 阮俊. 基于可调谐半导体激光吸收光谱的酒精蒸汽检测方法. 物理学报, 2014, 63(4): 043301. doi: 10.7498/aps.63.043301
    [18] 邹涛波, 胡放荣, 肖靖, 张隆辉, 刘芳, 陈涛, 牛军浩, 熊显名. 基于超材料的偏振不敏感太赫兹宽带吸波体设计. 物理学报, 2014, 63(17): 178103. doi: 10.7498/aps.63.178103
    [19] 沈晓鹏, 崔铁军, 叶建祥. 基于超材料的微波双波段吸收器. 物理学报, 2012, 61(5): 058101. doi: 10.7498/aps.61.058101
    [20] 霍永恒, 马文全, 张艳华, 黄建亮, 卫炀, 崔凯, 陈良惠. 两端叠层结构的中长波量子阱红外探测器. 物理学报, 2011, 60(9): 098401. doi: 10.7498/aps.60.098401
计量
  • 文章访问数:  6517
  • PDF下载量:  228
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-22
  • 修回日期:  2018-03-21
  • 刊出日期:  2019-05-20

/

返回文章
返回