搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

十二烷二酸修饰TiO2电子传输层改善钙钛矿太阳电池的电流特性

杜相 陈思 林东旭 谢方艳 陈建 谢伟广 刘彭义

引用本文:
Citation:

十二烷二酸修饰TiO2电子传输层改善钙钛矿太阳电池的电流特性

杜相, 陈思, 林东旭, 谢方艳, 陈建, 谢伟广, 刘彭义

Improvement of current characteristic of perovskite solar cells using dodecanedioic acid modified TiO2 electron transporting layer

Du Xiang, Chen Si, Lin Dong-Xu, Xie Fang-Yan, Chen Jian, Xie Wei-Guang, Liu Peng-Yi
PDF
导出引用
  • 在经典的平面异质结钙钛矿太阳电池中,TiO2致密层的电子传输性能一直是获得优异光伏性能的决定性因素之一.相较于spriro-OMeTAD等常见的空穴传输材料优异的空穴传输能力,作为电子传输材料的TiO2的导电性较弱,无法形成良好的电荷匹配.为了解决这个问题,我们使用自组装的十二烷二酸(DDDA)单分子层来修饰TiO2致密层的表面,TiO2致密层的导电性能得到大幅提升,并且其能带结构得到优化,促进了电子传输,降低了电子积聚和载流子复合,使得电池的短路电流密度(JSC)从修饰前的20.34 mA cm-2提升至修饰后的23.28 mAcm-2,进而使得电池在标准测量条件下的光电能量转换效率从14.17%提升至15.92%.同时还发现,通过DDDA修饰TiO2致密层,所制备的器件的光稳定性显著提升,器件未封装暴露在AM 1.5光强100 mWcm-2的模拟太阳光下超过720 min,保持初始效率的71%以上且趋于稳定.
    In the classical planar heterojunction perovskite solar cells (PSCs), the electron conducting TiO2 layer shows lower conductivity than the hole transporting materials such as spiro-OMeTAD, which becomes one of the key problems in improving the power conversion efficiency (PCE) of PSCs. In this study, the surface of compact TiO2 layer is modified by a thin self-assembled dodecanedioic acid (DDDA) molecular layer. The TiO2 substrates are immersed into the DDDA solution for 0.5, 2.5, 4.5, 22 h, respectively. It is found that the PCE of PSCs is improved when using the DDDA modified TiO2, showing optimized PCE of 15.35%0.75% under AM 1.5G illumination at 100 mWcm-2 after 4.5 h modification. The short current density (JSC) of the best device is improved from 20.34 mA cm-2 to 23.28 mA cm-2, with the PCE increasing from 14.17% to 15.92%. And it is found that the hysteresis of the PSC is also reduced remarkably with hysteresis index decreasing from 0.4288 to 0.2430. In the meantime, the device with DDDA modification shows a significant improvement in light stability, keeping 71% of its initial PCE value after 720 min exposure under AM 1.5G illumination at 100 mW cm-2 without encapsulation. As a contrast, the device without DDDA modification keeps 59% of its initial PCE value under the same condition. To reveal the mechanism, we investigate the surface energy level change using ultraviolet photoemission spectroscopy. It is found that after DDDA modification, the valence-band maximum energy (EVBM) of TiO2 decreases from -7.25 eV to -7.32 eV, and the conduction-band minimum energy (ECBM) of TiO2 from -4.05 eV to -4.12 eV. The shifting of energy level optimizes the energy level alignment at the interface between the TiO2 and perovskite. It promotes the transport of electrons from perovskite layer to compact TiO2 layer and obstructs the transport of holes from perovskite layer to compact TiO2 layer more effectively. In addition, the decrease of ECBM implies the increase of conductivity of TiO2. We further design a series of electrical experiments, and confirm that the modification improves the conductivity of TiO2 obviously with both contact resistance and thin-film resistance decreasing. In summary, our results indicate the enormous potential of the compact TiO2 layer with a thin self-assembled DDDA molecular layer modification to construct efficient and stable planar heterojunction PSCs for practical applications.
      通信作者: 谢伟广, wgxie@email.jnu.edu.cn;tlpy@jnu.edu.cn ; 刘彭义, wgxie@email.jnu.edu.cn;tlpy@jnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61674070,11574119,21576301,51303217,51373205)和广州市科技计划(批准号:201605030008)资助的课题.
      Corresponding author: Xie Wei-Guang, wgxie@email.jnu.edu.cn;tlpy@jnu.edu.cn ; Liu Peng-Yi, wgxie@email.jnu.edu.cn;tlpy@jnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61674070, 11574119, 21576301, 51303217, 51373205) and the Science and Technology Planning Project of Guangzhou, China (Grant No. 201605030008).
    [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T J 2009 Am. Chem. Soc. 131 6050

    [2]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643

    [3]

    Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Grtzel M, Park N G 2012 Sci. Rep. 2 591

    [4]

    Liu M Z, Johnston M B, Snaith H J 2013 Nature 501 395

    [5]

    Lee J W, Seol D J, Cho A N, Park N G 2014 Adv. Mater. 26 4991

    [6]

    Zhou H P, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z R, You J B, Liu Y S, Yang Y 2014 Science 345 542

    [7]

    Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J, Seok S I 2015 Science 348 1234

    [8]

    Saliba M, Matsui T, Domanski K, Seo J Y, Ummadisingu A, Zakeeruddin S M, Correa-Baena J P, Tress W R, Abate A, Hagfeldt A, Grtzel M 2016 Science 354 206

    [9]

    Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H, Seok S I 2017 Science 356 1376

    [10]

    Li Y W, Zhao Y, Chen Q, Yang Y, Liu Y S, Hong Z R, Liu Z H, Hsieh Y T, Meng L, Li Y F, Yang Y 2015 J. Am. Chem. Soc. 137 15540

    [11]

    Wang F Z, Tan Z A, Dai S Y, Li Y F 2015 Acta Phys. Sin. 64 038401 (in Chinese) [王福芝, 谭占鳌, 戴松元, 李永舫 2015 物理学报 64 038401]

    [12]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341

    [13]

    Zhao Y X, Nardes A M, Zhu K 2014 J. Phys. Chem. Lett. 5 490

    [14]

    Xing G C, Mathews N, Sun S, Lim S S, Lam Y M, Grtzel M, Mhaisalkar S, Sum T C 2013 Science 342 344

    [15]

    Yao X, Ding Y L, Zhang X D, Zhao Y 2015 Acta Phys. Sin. 64 038805 (in Chinese) [姚鑫, 丁艳丽, 张晓丹, 赵颖 2015 物理学报 64 038805]

    [16]

    Song Z H, Wang S R, Xiao Y, Li X G 2015 Acta Phys. Sin. 64 033301 (in Chinese) [宋志浩, 王世荣, 肖殷, 李祥高 2015 物理学报 64 033301]

    [17]

    Liu P, Yang B C, Liu G, Wu R S, Zhang C J, Wan F, Li Y G, Yang J L, Gao Y L, Zhou C H 2017 Chin. Phys. B 26 058401

    [18]

    Shi J J, Xu X, Li D M, Meng Q B 2015 Small 11 2472

    [19]

    Kumar M H, Yantara N, Dharani S, Graetzel M, Mhaisalkar S, Boix P P, Mathews N 2013 Chem. Commun. 49 11089

    [20]

    Zhang Q F, Dandeneau C S, Zhou X Y, Cao G Z 2009 Adv. Mater. 21 4087

    [21]

    Ariyanto N P, Abdullah H, Syarif J, Yuliarto B, Shaari S 2010 Funct. Mater. Lett. 3 303

    [22]

    Goncalves A S, Ges M S, Fabregat-Santiago F, Moehl T, Davolos M R, Bisquert J, Yanagida S, Nogueira A F, Bueno P R 2011 Electrochim. Acta 56 6503

    [23]

    Liu Y, Xu Z, Zhao S L, Qiao B, Li Y, Qin Z L, Zhu Y Q 2017 Acta Phys. Sin. 66 118801 (in Chinese) [刘毅, 徐征, 赵谡玲, 乔泊, 李杨, 秦梓伦, 朱友勤 2017 物理学报 66 118801]

    [24]

    Ding X J, Ni L, Ma S B, Ma Y Z, Xiao L X, Chen Z J 2015 Acta Phys. Sin. 64 038802 (in Chinese) [丁雄傑, 倪露, 马圣博, 马英壮, 肖立新, 陈志坚 2015 物理学报 64 038802]

    [25]

    Wojciechowski K, Saliba M, Leijtens T, Abate A, Snaith H J 2014 Energy Environ. Sci. 7 1142

    [26]

    Hendry E, Koeberg M, O'Regan B, Bonn M 2006 Nano Lett. 6 755

    [27]

    Savenije T J, Huijser A, Vermeulen M J W, Katoh R 2008 Chem. Phys. Lett. 461 93

    [28]

    Fravventura M C, Deligiannis D, Schins J M, Siebbeles L D A, Savenije T J 2013 J. Phys. Chem. C 117 8032

    [29]

    Chen J Q, Yang D H, Jiang J H, Ma A B, Song D, Ni C Y, Hu M Z 2015 Mater Rev.: Rev. 29 1 (in Chinese) [陈建清, 杨东辉, 江静华, 马爱斌, 宋丹, Ni Chaoying, Hu Michael Z 2015 材料导报: 综述篇 29 1]

    [30]

    Abate A, Leijtens T, Pathak S, Teuscher J, Avolio R, Errico M E, Kirkpatrik J, Ball J M, Docampo P, McPherson I, Snaith H J 2013 Phys. Chem. Chem. Phys. 15 2572

    [31]

    Poplavskyy D, Nelson J 2003 J. Appl. Phys. 93 341

    [32]

    Abrusci A, Stranks S D, Docampo P, Yip H L, Jen A K Y, Snaith H J 2013 Nano Lett. 13 3124

    [33]

    Wojciechowski K, Stranks S D, Abate A, Sadoughi G, Sadhanala A, Kopidakis N, Rumbles G, Li C Z, Friend R H, Jen A K Y, Snaith H J 2014 ACS Nano 8 12701

    [34]

    Wang J X, Bi Z N, Liang Z R, Xu X Q 2016 Acta Phys. Sin. 65 058801 (in Chinese) [王军霞, 毕卓能, 梁柱荣, 徐雪青 2016 物理学报 65 058801]

    [35]

    Burschka J, Pellet N, Moon S J, Baker R H, Gao P, Nazeeruddin M K, Grtzel M 2013 Nature 499 316

    [36]

    Cojocaru L, Uchida S, Sanehira Y, Nakazaki J, Kubo T, Segawa H 2015 Chem. Lett. 44 674

    [37]

    Lao C S, Li Y, Wong C P, Wang Z L 2007 Nano Lett. 7 1323

    [38]

    Xu L, Tang C Q, Qian J 2010 Acta Phys. Sin. 59 2721 (in Chinese) [徐凌, 唐超群, 钱俊 2010 物理学报 59 2721]

    [39]

    Park N G 2013 J. Phys. Chem. Lett. 4 2423

    [40]

    Snaith H J, Abate A, Ball J M, Eperon G E, Leijtens T, Noel N K, Stranks S D, Wang J T, Wojciechowski K, Zhang W 2014 J. Phys. Chem. Lett. 5 1511

    [41]

    Yella A, Heiniger L P, Gao P, Nazeeruddin M K, Grtzel M 2014 Nano Lett. 14 2591

    [42]

    Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok S I 2014 Nat. Mater. 13 897

    [43]

    Dualeh A, Moehl T, Tetreault N, Teuscher J, Gao P, Nazeeruddin M K, Grtzel M 2014 ACS Nano 8 362

    [44]

    Mei A Y, Li X, Liu L F, Ku Z L, Liu T F, Rong Y G, Xu M, Hu M, Chen J Z, Yang Y, Grtzel M, Han H W 2014 Science 345 295

    [45]

    Bai Y B, Wang Q Y, L R T, Zhu H W, Kang F Y 2016 Chin. Sci. Bull. 61 489 (in Chinese) [白宇冰, 王秋莹, 吕瑞涛, 朱宏伟, 康飞宇 2016 科学通报 61 489]

    [46]

    Ito S, Tanaka S, Manabe K, Nishino H 2014 J. Phys. Chem. C 118 16995

    [47]

    Fujishima A, Rao T N, Tryk D A 2000 J. Photochem. Photobiol. C 1 1

    [48]

    Leijtens T, Eperon G E, Pathak S, Abate A, Lee M M, Snaith H J 2013 Nat. Commun. 4 2885

    [49]

    Guo X D, Niu G D, Wang L D 2015 Acta Chim. Sin. 73 211 (in Chinese) [郭旭东, 牛广达, 王立铎 2015 化学学报 73 211]

  • [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T J 2009 Am. Chem. Soc. 131 6050

    [2]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643

    [3]

    Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Grtzel M, Park N G 2012 Sci. Rep. 2 591

    [4]

    Liu M Z, Johnston M B, Snaith H J 2013 Nature 501 395

    [5]

    Lee J W, Seol D J, Cho A N, Park N G 2014 Adv. Mater. 26 4991

    [6]

    Zhou H P, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z R, You J B, Liu Y S, Yang Y 2014 Science 345 542

    [7]

    Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J, Seok S I 2015 Science 348 1234

    [8]

    Saliba M, Matsui T, Domanski K, Seo J Y, Ummadisingu A, Zakeeruddin S M, Correa-Baena J P, Tress W R, Abate A, Hagfeldt A, Grtzel M 2016 Science 354 206

    [9]

    Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H, Seok S I 2017 Science 356 1376

    [10]

    Li Y W, Zhao Y, Chen Q, Yang Y, Liu Y S, Hong Z R, Liu Z H, Hsieh Y T, Meng L, Li Y F, Yang Y 2015 J. Am. Chem. Soc. 137 15540

    [11]

    Wang F Z, Tan Z A, Dai S Y, Li Y F 2015 Acta Phys. Sin. 64 038401 (in Chinese) [王福芝, 谭占鳌, 戴松元, 李永舫 2015 物理学报 64 038401]

    [12]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341

    [13]

    Zhao Y X, Nardes A M, Zhu K 2014 J. Phys. Chem. Lett. 5 490

    [14]

    Xing G C, Mathews N, Sun S, Lim S S, Lam Y M, Grtzel M, Mhaisalkar S, Sum T C 2013 Science 342 344

    [15]

    Yao X, Ding Y L, Zhang X D, Zhao Y 2015 Acta Phys. Sin. 64 038805 (in Chinese) [姚鑫, 丁艳丽, 张晓丹, 赵颖 2015 物理学报 64 038805]

    [16]

    Song Z H, Wang S R, Xiao Y, Li X G 2015 Acta Phys. Sin. 64 033301 (in Chinese) [宋志浩, 王世荣, 肖殷, 李祥高 2015 物理学报 64 033301]

    [17]

    Liu P, Yang B C, Liu G, Wu R S, Zhang C J, Wan F, Li Y G, Yang J L, Gao Y L, Zhou C H 2017 Chin. Phys. B 26 058401

    [18]

    Shi J J, Xu X, Li D M, Meng Q B 2015 Small 11 2472

    [19]

    Kumar M H, Yantara N, Dharani S, Graetzel M, Mhaisalkar S, Boix P P, Mathews N 2013 Chem. Commun. 49 11089

    [20]

    Zhang Q F, Dandeneau C S, Zhou X Y, Cao G Z 2009 Adv. Mater. 21 4087

    [21]

    Ariyanto N P, Abdullah H, Syarif J, Yuliarto B, Shaari S 2010 Funct. Mater. Lett. 3 303

    [22]

    Goncalves A S, Ges M S, Fabregat-Santiago F, Moehl T, Davolos M R, Bisquert J, Yanagida S, Nogueira A F, Bueno P R 2011 Electrochim. Acta 56 6503

    [23]

    Liu Y, Xu Z, Zhao S L, Qiao B, Li Y, Qin Z L, Zhu Y Q 2017 Acta Phys. Sin. 66 118801 (in Chinese) [刘毅, 徐征, 赵谡玲, 乔泊, 李杨, 秦梓伦, 朱友勤 2017 物理学报 66 118801]

    [24]

    Ding X J, Ni L, Ma S B, Ma Y Z, Xiao L X, Chen Z J 2015 Acta Phys. Sin. 64 038802 (in Chinese) [丁雄傑, 倪露, 马圣博, 马英壮, 肖立新, 陈志坚 2015 物理学报 64 038802]

    [25]

    Wojciechowski K, Saliba M, Leijtens T, Abate A, Snaith H J 2014 Energy Environ. Sci. 7 1142

    [26]

    Hendry E, Koeberg M, O'Regan B, Bonn M 2006 Nano Lett. 6 755

    [27]

    Savenije T J, Huijser A, Vermeulen M J W, Katoh R 2008 Chem. Phys. Lett. 461 93

    [28]

    Fravventura M C, Deligiannis D, Schins J M, Siebbeles L D A, Savenije T J 2013 J. Phys. Chem. C 117 8032

    [29]

    Chen J Q, Yang D H, Jiang J H, Ma A B, Song D, Ni C Y, Hu M Z 2015 Mater Rev.: Rev. 29 1 (in Chinese) [陈建清, 杨东辉, 江静华, 马爱斌, 宋丹, Ni Chaoying, Hu Michael Z 2015 材料导报: 综述篇 29 1]

    [30]

    Abate A, Leijtens T, Pathak S, Teuscher J, Avolio R, Errico M E, Kirkpatrik J, Ball J M, Docampo P, McPherson I, Snaith H J 2013 Phys. Chem. Chem. Phys. 15 2572

    [31]

    Poplavskyy D, Nelson J 2003 J. Appl. Phys. 93 341

    [32]

    Abrusci A, Stranks S D, Docampo P, Yip H L, Jen A K Y, Snaith H J 2013 Nano Lett. 13 3124

    [33]

    Wojciechowski K, Stranks S D, Abate A, Sadoughi G, Sadhanala A, Kopidakis N, Rumbles G, Li C Z, Friend R H, Jen A K Y, Snaith H J 2014 ACS Nano 8 12701

    [34]

    Wang J X, Bi Z N, Liang Z R, Xu X Q 2016 Acta Phys. Sin. 65 058801 (in Chinese) [王军霞, 毕卓能, 梁柱荣, 徐雪青 2016 物理学报 65 058801]

    [35]

    Burschka J, Pellet N, Moon S J, Baker R H, Gao P, Nazeeruddin M K, Grtzel M 2013 Nature 499 316

    [36]

    Cojocaru L, Uchida S, Sanehira Y, Nakazaki J, Kubo T, Segawa H 2015 Chem. Lett. 44 674

    [37]

    Lao C S, Li Y, Wong C P, Wang Z L 2007 Nano Lett. 7 1323

    [38]

    Xu L, Tang C Q, Qian J 2010 Acta Phys. Sin. 59 2721 (in Chinese) [徐凌, 唐超群, 钱俊 2010 物理学报 59 2721]

    [39]

    Park N G 2013 J. Phys. Chem. Lett. 4 2423

    [40]

    Snaith H J, Abate A, Ball J M, Eperon G E, Leijtens T, Noel N K, Stranks S D, Wang J T, Wojciechowski K, Zhang W 2014 J. Phys. Chem. Lett. 5 1511

    [41]

    Yella A, Heiniger L P, Gao P, Nazeeruddin M K, Grtzel M 2014 Nano Lett. 14 2591

    [42]

    Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok S I 2014 Nat. Mater. 13 897

    [43]

    Dualeh A, Moehl T, Tetreault N, Teuscher J, Gao P, Nazeeruddin M K, Grtzel M 2014 ACS Nano 8 362

    [44]

    Mei A Y, Li X, Liu L F, Ku Z L, Liu T F, Rong Y G, Xu M, Hu M, Chen J Z, Yang Y, Grtzel M, Han H W 2014 Science 345 295

    [45]

    Bai Y B, Wang Q Y, L R T, Zhu H W, Kang F Y 2016 Chin. Sci. Bull. 61 489 (in Chinese) [白宇冰, 王秋莹, 吕瑞涛, 朱宏伟, 康飞宇 2016 科学通报 61 489]

    [46]

    Ito S, Tanaka S, Manabe K, Nishino H 2014 J. Phys. Chem. C 118 16995

    [47]

    Fujishima A, Rao T N, Tryk D A 2000 J. Photochem. Photobiol. C 1 1

    [48]

    Leijtens T, Eperon G E, Pathak S, Abate A, Lee M M, Snaith H J 2013 Nat. Commun. 4 2885

    [49]

    Guo X D, Niu G D, Wang L D 2015 Acta Chim. Sin. 73 211 (in Chinese) [郭旭东, 牛广达, 王立铎 2015 化学学报 73 211]

  • [1] 许畅, 郑德旭, 董心睿, 吴飒建, 武明星, 王开, 刘生忠. 钙钛矿基三结叠层太阳电池的研究进展. 物理学报, 2024, 73(24): 248802. doi: 10.7498/aps.73.20241187
    [2] 姚美灵, 廖纪星, 逯好峰, 黄强, 崔艳峰, 李翔, 杨雪莹, 白杨. 影响钙钛矿/异质结叠层太阳能电池效率及稳定性的关键问题与解决方法. 物理学报, 2024, 73(8): 088801. doi: 10.7498/aps.73.20231977
    [3] 王仕东, 闫雅婷, 王瑞英, 朱志立, 谷锦华. 铯掺杂提升反梯度结构二维(CMA)2MA8Pb9I28钙钛矿薄膜及太阳电池的性能. 物理学报, 2023, 72(13): 138801. doi: 10.7498/aps.72.20230357
    [4] 肖友鹏, 王怀平, 冯林. 硒化亚锗异质结太阳电池模拟研究. 物理学报, 2023, 72(24): 248801. doi: 10.7498/aps.72.20231220
    [5] 潘洪英, 全知觉. p层空穴浓度及厚度对InGaN同质结太阳电池性能的影响机理研究. 物理学报, 2019, 68(19): 196103. doi: 10.7498/aps.68.20191042
    [6] 赵生盛, 徐玉增, 陈俊帆, 张力, 侯国付, 张晓丹, 赵颖. 免掺杂、非对称异质接触晶体硅太阳电池的研究进展. 物理学报, 2019, 68(4): 048801. doi: 10.7498/aps.68.20181991
    [7] 陈亮, 张利伟, 陈永生. 无铅和少铅的有机-无机杂化钙钛矿太阳电池研究进展. 物理学报, 2018, 67(2): 028801. doi: 10.7498/aps.67.20171956
    [8] 陈新亮, 陈莉, 周忠信, 赵颖, 张晓丹. Cu2O/ZnO氧化物异质结太阳电池的研究进展. 物理学报, 2018, 67(11): 118401. doi: 10.7498/aps.67.20172037
    [9] 李少华, 李海涛, 江亚晓, 涂丽敏, 李文标, 潘玲, 杨仕娥, 陈永生. 高效平面异质结有机-无机杂化钙钛矿太阳电池的质量管理. 物理学报, 2018, 67(15): 158801. doi: 10.7498/aps.67.20172600
    [10] 肖友鹏, 王涛, 魏秀琴, 周浪. 硅异质结太阳电池的物理机制和优化设计. 物理学报, 2017, 66(10): 108801. doi: 10.7498/aps.66.108801
    [11] 杨旭东, 陈汉, 毕恩兵, 韩礼元. 高效率钙钛矿太阳电池发展中的关键问题. 物理学报, 2015, 64(3): 038404. doi: 10.7498/aps.64.038404
    [12] 王福芝, 谭占鳌, 戴松元, 李永舫. 平面异质结有机-无机杂化钙钛矿太阳电池研究进展. 物理学报, 2015, 64(3): 038401. doi: 10.7498/aps.64.038401
    [13] 姚鑫, 丁艳丽, 张晓丹, 赵颖. 钙钛矿太阳电池综述. 物理学报, 2015, 64(3): 038805. doi: 10.7498/aps.64.038805
    [14] 张永, 单智发, 蔡建九, 吴洪清, 李俊承, 陈凯轩, 林志伟, 王向武. 空间用GaInP/GaAs/In0.3Ga0.7 As(1 eV)倒装三结太阳电池研制. 物理学报, 2013, 62(15): 158802. doi: 10.7498/aps.62.158802
    [15] 刘伟庆, 寇东星, 胡林华, 戴松元. 染料敏化太阳电池内部光路折转对电子传输特性的影响. 物理学报, 2012, 61(16): 168201. doi: 10.7498/aps.61.168201
    [16] 哈日巴拉, 师兰, 姜磊, 郭金毓, 原光瑜, 王李波, 刘宗瑞. 纳米TiO2叶片状阵列电极的制备及其在染料敏化太阳电池中电子的输运性能. 物理学报, 2011, 60(8): 088101. doi: 10.7498/aps.60.088101
    [17] 奚小网, 胡林华, 徐炜炜, 戴松元. TiCl4处理多孔薄膜对染料敏化太阳电池中电子传输特性影响研究. 物理学报, 2011, 60(11): 118203. doi: 10.7498/aps.60.118203
    [18] 梁林云, 戴松元, 胡林华, 戴俊, 刘伟庆. TiO2颗粒尺寸对染料敏化太阳电池内电子输运特性影响研究. 物理学报, 2009, 58(2): 1338-1343. doi: 10.7498/aps.58.1338
    [19] 梁林云, 戴松元, 方霞琴, 胡林华. 染料敏化太阳电池中TiO2膜内电子传输和背反应特性研究. 物理学报, 2008, 57(3): 1956-1962. doi: 10.7498/aps.57.1956
    [20] 胡志华, 廖显伯, 曾湘波, 徐艳月, 张世斌, 刁宏伟, 孔光临. 纳米硅(nc-Si:H )/晶体硅(c-Si)异质结太阳电池的数值模拟分析. 物理学报, 2003, 52(1): 217-224. doi: 10.7498/aps.52.217
计量
  • 文章访问数:  7431
  • PDF下载量:  164
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-31
  • 修回日期:  2018-02-19
  • 刊出日期:  2018-05-05

/

返回文章
返回