搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双连续型乳液凝胶(Bijel)的研究进展

李涛 陈科 Jure Dobnikar

引用本文:
Citation:

双连续型乳液凝胶(Bijel)的研究进展

李涛, 陈科, Jure Dobnikar

Research progress of bicontinuous interfacially jammed emulsion gel (Bijel)

Li Tao, Chen Ke, Jure Dobnikar
PDF
导出引用
  • 双连续型结构是指同一体系中存在两种连续态,这在刚体中很容易实现,但对于流体却十分困难.要使两种流体同时保持连续态,不仅对它们的相容性、密度、极性等方面要求极高,还需要稳定剂来牢牢稳定住液-液界面.最早的双连续型凝胶是在对高聚物进行研究时发现的,后来英国爱丁堡大学软物质课题组进行了一系列研究,最终在低分子量液体体系中实现了重大突破,制备出本文所要讨论的bicontinuous interfacially jammed emulsion gel(Bijel).这种结构可以被称作“双连续型乳液凝胶”,它兼有乳液(emulsion)和凝胶(gel)的物理性质,独特的双连续结构使它拥有更为广阔的应用空间.本文简短地回顾了Bijel的研发过程,总结近年来的研究进展,指出它在工业应用中受到的限制,并对室温下通过直接搅拌制备Bijel的方法做重点介绍.
    In 2005, a bicontinuous arrangement of domains was explored by large-scale computer simulations. In a binary liquid host, the behaviors of neutrally wetting particles were simulated following an instantaneous quench into the demixed region. As the two mutually immiscible liquids phase separate, particles can be swept up by the freshly created interface and jam together as the domains coarsen, forming a particle-stabilized interface between two continuous liquid phases. This type of material is known as “bicontinuous interfacially jammed emulsion gel” (Bijel), and has been demonstrated experimentally using water-lutidine mixture in 2007. It is believed that Bijels have rich potential applications in diverse areas including healthcare, food, energy and reaction engineering due to their unique structural, mechanical and transport properties.As a new class of soft materials, Bijels have received great attention in recent years, and have been developed by using different liquids and non-spherical particles. However, a wide gap remains between the experimental systems and the industrial applications. This short review will critically assess current progress of Bijels and relevant studies including the attempts and challenges to use them in industry; the creation of Bijels by direct mixing at room temperature will be highlighted specifically.Chapter 1 presents the theoretical background. For binary-liquid systems containing dispersed colloidal particles, arrested composites can be created via the stabilization of convoluted fluid-fluid interfaces. Based on this, different morphologies of Pickering emulsions would be obtained. Chapter 2 first focuses on some complex emulsions, including Janus droplets and multiple emulsions, and then induces the bi-continuous structures. Such structures were originally formed through spinodal decomposition, which catches the phase demixing of an initially single-phase liquid mixture containing a colloidal suspension, and normally needs to control the temperature carefully. In Chapter 3, the mechanism of spinodal decomposition is presented. Chapter 4 shows some recent research progress of Bijels, including the studies with different liquid systems, nonspherical particles and some chemical property measurements. This chapter also summarizes the challenges in using Bijels in industry. In Chapter 5, a new method of creating Bijels by direct mixing at room temperature is demonstrated. This method simply needs high viscosity liquids, nanoparticles and a surfactant; it not only bridges the gap between conventional Bijel production (see Chapter 3) and that of particle stabilized bicontinuous structures using bulk polymers, but also bypasses the careful particle modification and phase separation steps for conventional Bijels. In Chapter 6 some conclusions are drawn and a general outlook is also provided.
      通信作者: 李涛, litao444@iphy.ac.cn
    • 基金项目: 第62批中国博士后科学基金面上资助(批准号:2017M620946)和国家自然科学基金(批准号:11474327)资助的课题.
      Corresponding author: Li Tao, litao444@iphy.ac.cn
    • Funds: Project supported by the China Postdoctoral Science Foundation (Grant No. 2017 M620946) and the National Natural Science Foundation of China (Grant No. 11474327).
    [1]

    Torquato S 2002 Random Heterogeneous Materials: Microstructure and Macroscopic Properties (New York: Springer)

    [2]

    Larson R G 1999 The Structure and Rheology of Complex Fluids (Oxford: Oxford University Press) pp261-440

    [3]

    Herzig E M, White K A, Schofield A B, Poon W C K, Clegg P S 2007 Nat. Mater. 6 966

    [4]

    Lazo N D B, Scott C E 2001 Polymer 42 4219

    [5]

    Stratford K, Adhikari R, Pagonabarraga I, Desplat J C, Cates M E 2005 Science 309 2198

    [6]

    Lefebure S, Ménager C, Cabuil V, Assenheimer M, Gallet F, Flament C 1998 J. Phys. Chem. B 102 2733

    [7]

    Binks B P Binks B P, Horozov T S 2006 Colloidal Particles at Liquid Interfaces (Cambridge: Cambridge University Press) p518

    [8]

    Binks B P, Horozov T S 2006 Colloidal Particles at Liquid Interfaces (Cambridge: Cambridge University Press) p518

    [9]

    Binks B P, Clint J H, Whitby C P 2005 Langmuir 21 5307

    [10]

    Arditty S, Schmitt V, Giermanska-Kahn J, Leal-Calderon F 2004 J. Colloid Interface Sci. 275 659

    [11]

    Liu A J, Nagel S R 1998 Nature 396 21

    [12]

    Cui M, Emrick T, Russell T P 2013 Science 342 460

    [13]

    Vandebril S, Vermant J, Moldenaers P 2010 Soft Matter 6 3353

    [14]

    Dickinson E, van Vliet T 2003 Food Colloids, Biopolymers and Materials (Cambridge: Royal Society of Chemistry) p68

    [15]

    Williams P A, Phillips G O 2004 Gums and Stabilisers for the Food Industry (Cambridge: Royal Society of Chemistry) p394

    [16]

    Pickering S U 1907 J. Chem. Soc. Trans. 91 2001

    [17]

    Friberg S E, Friberg S H 2013 Encyclopedia of Colloid and Interface Science (Berlin: Springer Berlin Heidelberg) pp366-414

    [18]

    Clegg P S, Tavacoli J W, Wilde P J 2016 Soft Matter 12 998

    [19]

    Binks B P, Tyowua A T 2016 Soft Matter 12 876

    [20]

    Pang X, Wan C, Wang M, Lin Z 2014 Angew. Chem. Int. Ed. 53 5524

    [21]

    Nisisako T 2016 Curr. Opin. Colloid Interface Sci. 25 1

    [22]

    Ge L, Li X, Friberg S E, Guo R 2016 Colloid Polym. Sci. 294 1815

    [23]

    Zarzar L D, Sresht V, Sletten E M, Kalow J A, Blankschtein D, Swager T M 2015 Nature 518 520

    [24]

    Bécu L, Benyahia L 2009 Langmuir 25 6678

    [25]

    Mulligan M K, Rothstein J P 2011 Langmuir 27 9760

    [26]

    Chew C H, Li T D, Gan L H, Quek C H, Gan L M 1998 Langmuir 14 6068

    [27]

    Miller W Lash, McPherson R H 1908 J. Phys. Chem. 12 706

    [28]

    Debenedetti P G 1996 Metastable Liquids (New Jersey: Princeton University Press)

    [29]

    Bray A J 1994 Adv. Phys. 43 357

    [30]

    Kendon V M, Cates M E, Pagonabarraga I, Desplat J C, Bladon P 2001 J. Fluid Mech. 440 147

    [31]

    Herzig, Eva M 2008 Ph. D. Dissertation (Edinburgh: The University of Edinburgh)

    [32]

    Reeves M, Brown A T, Schofield A B, Cates M E, Thijssen J H J 2015 Phy. Rev. E 92 032308

    [33]

    White K A, Schofield A B, Binks B P, Clegg P S 2008 J. Phys. Condens. Matter 20 494223

    [34]

    White K A, Schofield A B, Wormald P, Tavacoli J W, Binks B P, Clegg P S 2011 J. Colloid Interface Sci. 359 126

    [35]

    Haase M F, Stebe K J, Lee D 2015 Adv. Mater. 27 7065

    [36]

    Tavacoli J W, Thijssen J H, Schofield A B, Clegg P S 2011 Adv. Funct. Mater. 21 2020

    [37]

    Cai D, Clegg P S 2015 Chem. Commun. 51 16984

    [38]

    Haase M F, Sharifi-Mood N, Lee D, Stebe K J 2016 ACS Nano 10 6338

    [39]

    Cates M E, Clegg P S 2008 Soft Matter 4 2132

    [40]

    Kim E, Stratford K, Cates M E 2010 Langmuir 26 7928

    [41]

    Sanz E, White K A, Clegg P S, Cates M E 2009 Phys. Rev. Lett. 103 255502

    [42]

    Jansen F, Harting J 2011 Phys. Rev. E 83 046707

    [43]

    Bai L, Fruehwirth J W, Cheng X, Macosko C W 2015 Soft Matter 11 5282

    [44]

    Hijnen N, Cai D, Clegg P S 2015 Soft Matter 11 4351

    [45]

    Lee M N, Thijssen J H, Witt J A, Clegg P S, Mohraz A 2013 Adv. Funct. Mater. 23 417

    [46]

    Witt J A, Mumm D R, Mohraz A 2016 J. Mater. Chem. A 4 1000

    [47]

    Cai D, Richter F H, Thijssen J, Bruce P G, Clegg P 2018 Mater. Horiz. DOI: 101039/C7MH01038A

    [48]

    Chung H J, Ohno K, Fukuda T, Composto R J 2005 Nano Lett. 5 1878

    [49]

    Chung H J, Ohno K, Fukuda T, Composto R J 2007 Macromolecules 40 384

    [50]

    Clegg P S 2008 J. Phys. Condens. Matter 20 113101

    [51]

    Cai D, Clegg P S, Li T, Rumble K A, Tavacoli J W 2017 Soft Matter 13 4824

    [52]

    Huang C, Forth J, Wang W, Hong K, Smith G S, Helms B A, Russell T P 2017 Nat. Nanotechnol. 12 1060

  • [1]

    Torquato S 2002 Random Heterogeneous Materials: Microstructure and Macroscopic Properties (New York: Springer)

    [2]

    Larson R G 1999 The Structure and Rheology of Complex Fluids (Oxford: Oxford University Press) pp261-440

    [3]

    Herzig E M, White K A, Schofield A B, Poon W C K, Clegg P S 2007 Nat. Mater. 6 966

    [4]

    Lazo N D B, Scott C E 2001 Polymer 42 4219

    [5]

    Stratford K, Adhikari R, Pagonabarraga I, Desplat J C, Cates M E 2005 Science 309 2198

    [6]

    Lefebure S, Ménager C, Cabuil V, Assenheimer M, Gallet F, Flament C 1998 J. Phys. Chem. B 102 2733

    [7]

    Binks B P Binks B P, Horozov T S 2006 Colloidal Particles at Liquid Interfaces (Cambridge: Cambridge University Press) p518

    [8]

    Binks B P, Horozov T S 2006 Colloidal Particles at Liquid Interfaces (Cambridge: Cambridge University Press) p518

    [9]

    Binks B P, Clint J H, Whitby C P 2005 Langmuir 21 5307

    [10]

    Arditty S, Schmitt V, Giermanska-Kahn J, Leal-Calderon F 2004 J. Colloid Interface Sci. 275 659

    [11]

    Liu A J, Nagel S R 1998 Nature 396 21

    [12]

    Cui M, Emrick T, Russell T P 2013 Science 342 460

    [13]

    Vandebril S, Vermant J, Moldenaers P 2010 Soft Matter 6 3353

    [14]

    Dickinson E, van Vliet T 2003 Food Colloids, Biopolymers and Materials (Cambridge: Royal Society of Chemistry) p68

    [15]

    Williams P A, Phillips G O 2004 Gums and Stabilisers for the Food Industry (Cambridge: Royal Society of Chemistry) p394

    [16]

    Pickering S U 1907 J. Chem. Soc. Trans. 91 2001

    [17]

    Friberg S E, Friberg S H 2013 Encyclopedia of Colloid and Interface Science (Berlin: Springer Berlin Heidelberg) pp366-414

    [18]

    Clegg P S, Tavacoli J W, Wilde P J 2016 Soft Matter 12 998

    [19]

    Binks B P, Tyowua A T 2016 Soft Matter 12 876

    [20]

    Pang X, Wan C, Wang M, Lin Z 2014 Angew. Chem. Int. Ed. 53 5524

    [21]

    Nisisako T 2016 Curr. Opin. Colloid Interface Sci. 25 1

    [22]

    Ge L, Li X, Friberg S E, Guo R 2016 Colloid Polym. Sci. 294 1815

    [23]

    Zarzar L D, Sresht V, Sletten E M, Kalow J A, Blankschtein D, Swager T M 2015 Nature 518 520

    [24]

    Bécu L, Benyahia L 2009 Langmuir 25 6678

    [25]

    Mulligan M K, Rothstein J P 2011 Langmuir 27 9760

    [26]

    Chew C H, Li T D, Gan L H, Quek C H, Gan L M 1998 Langmuir 14 6068

    [27]

    Miller W Lash, McPherson R H 1908 J. Phys. Chem. 12 706

    [28]

    Debenedetti P G 1996 Metastable Liquids (New Jersey: Princeton University Press)

    [29]

    Bray A J 1994 Adv. Phys. 43 357

    [30]

    Kendon V M, Cates M E, Pagonabarraga I, Desplat J C, Bladon P 2001 J. Fluid Mech. 440 147

    [31]

    Herzig, Eva M 2008 Ph. D. Dissertation (Edinburgh: The University of Edinburgh)

    [32]

    Reeves M, Brown A T, Schofield A B, Cates M E, Thijssen J H J 2015 Phy. Rev. E 92 032308

    [33]

    White K A, Schofield A B, Binks B P, Clegg P S 2008 J. Phys. Condens. Matter 20 494223

    [34]

    White K A, Schofield A B, Wormald P, Tavacoli J W, Binks B P, Clegg P S 2011 J. Colloid Interface Sci. 359 126

    [35]

    Haase M F, Stebe K J, Lee D 2015 Adv. Mater. 27 7065

    [36]

    Tavacoli J W, Thijssen J H, Schofield A B, Clegg P S 2011 Adv. Funct. Mater. 21 2020

    [37]

    Cai D, Clegg P S 2015 Chem. Commun. 51 16984

    [38]

    Haase M F, Sharifi-Mood N, Lee D, Stebe K J 2016 ACS Nano 10 6338

    [39]

    Cates M E, Clegg P S 2008 Soft Matter 4 2132

    [40]

    Kim E, Stratford K, Cates M E 2010 Langmuir 26 7928

    [41]

    Sanz E, White K A, Clegg P S, Cates M E 2009 Phys. Rev. Lett. 103 255502

    [42]

    Jansen F, Harting J 2011 Phys. Rev. E 83 046707

    [43]

    Bai L, Fruehwirth J W, Cheng X, Macosko C W 2015 Soft Matter 11 5282

    [44]

    Hijnen N, Cai D, Clegg P S 2015 Soft Matter 11 4351

    [45]

    Lee M N, Thijssen J H, Witt J A, Clegg P S, Mohraz A 2013 Adv. Funct. Mater. 23 417

    [46]

    Witt J A, Mumm D R, Mohraz A 2016 J. Mater. Chem. A 4 1000

    [47]

    Cai D, Richter F H, Thijssen J, Bruce P G, Clegg P 2018 Mater. Horiz. DOI: 101039/C7MH01038A

    [48]

    Chung H J, Ohno K, Fukuda T, Composto R J 2005 Nano Lett. 5 1878

    [49]

    Chung H J, Ohno K, Fukuda T, Composto R J 2007 Macromolecules 40 384

    [50]

    Clegg P S 2008 J. Phys. Condens. Matter 20 113101

    [51]

    Cai D, Clegg P S, Li T, Rumble K A, Tavacoli J W 2017 Soft Matter 13 4824

    [52]

    Huang C, Forth J, Wang W, Hong K, Smith G S, Helms B A, Russell T P 2017 Nat. Nanotechnol. 12 1060

计量
  • 文章访问数:  6365
  • PDF下载量:  455
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-01
  • 修回日期:  2018-03-21
  • 刊出日期:  2019-07-20

双连续型乳液凝胶(Bijel)的研究进展

  • 1. 中国科学院物理研究所, 北京凝聚态物理国家研究中心, 软物质物理重点实验室, 北京 100190
  • 通信作者: 李涛, litao444@iphy.ac.cn
    基金项目: 第62批中国博士后科学基金面上资助(批准号:2017M620946)和国家自然科学基金(批准号:11474327)资助的课题.

摘要: 双连续型结构是指同一体系中存在两种连续态,这在刚体中很容易实现,但对于流体却十分困难.要使两种流体同时保持连续态,不仅对它们的相容性、密度、极性等方面要求极高,还需要稳定剂来牢牢稳定住液-液界面.最早的双连续型凝胶是在对高聚物进行研究时发现的,后来英国爱丁堡大学软物质课题组进行了一系列研究,最终在低分子量液体体系中实现了重大突破,制备出本文所要讨论的bicontinuous interfacially jammed emulsion gel(Bijel).这种结构可以被称作“双连续型乳液凝胶”,它兼有乳液(emulsion)和凝胶(gel)的物理性质,独特的双连续结构使它拥有更为广阔的应用空间.本文简短地回顾了Bijel的研发过程,总结近年来的研究进展,指出它在工业应用中受到的限制,并对室温下通过直接搅拌制备Bijel的方法做重点介绍.

English Abstract

参考文献 (52)

目录

    /

    返回文章
    返回