搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cr含量对Ti-Nb-Cr合金抗腐蚀性影响的电子结构计算

程超 王逊 孙嘉兴 曹超铭 马云莉 刘艳侠

引用本文:
Citation:

Cr含量对Ti-Nb-Cr合金抗腐蚀性影响的电子结构计算

程超, 王逊, 孙嘉兴, 曹超铭, 马云莉, 刘艳侠

Electronic structure calculation of Cr content effect on corrosion resistance of Ti-Nb-Cr alloy

Cheng Chao, Wang Xun, Sun Jia-Xing, Cao Chao-Ming, Ma Yun-Li, Liu Yan-Xia
PDF
导出引用
  • 许多实验报道中表明合金化元素Cr能够提高Ti基合金的抗腐蚀性.为了解Cr元素含量对Ti-Cr-Nb合金的影响,本文计算了不同Cr含量的Ti-Cr-Nb合金的内聚能、形成能、费米能级和态密度等参数.分析了Cr含量对合金的电子结构稳定性以及腐蚀性能的影响.结果表明:随着Cr含量的增加,体系内聚能升高,形成能增加,体系稳定性略有下降,且材料形成条件变得苛刻;费米能级明显降低,体系不易失去电子,抗腐蚀性能增强;体系金属键增强,失电子能力降低,抗腐蚀性能提高;态密度与差分电荷密度研究表明,Cr含量的增加使得体系金属键增强,表明体系抗腐蚀性的提高.从费米能级和态密度图中发现,当Cr含量约为18.75 at.%时,合金的耐腐蚀性最优.
    Ti-based alloys are widely used in aerospace and medical engineering because of their excellent properties, such as good fracture toughness, high strength, good corrosion resistance, etc. However, the corrosion resistance performance of the alloys is not adequate to meet the requirements in many cases. The Ti-Cr-Nb ternary alloy system exhibits many excellent characteristics, especially the anti-corrosion ability, making it a very promising candidate for the applications in aerospace and medical engineering. The alloying element Cr can improve the corrosion resistance of Ti-based alloys as reported by many experiments. In order to understand and then predict the effect of Cr content on Ti-Nb-Cr alloy, the electronic structures, such as the cohesive energies, the formation energies, the Fermi levels and the densities of states (DOSs) of the Ti-Nb-Cr alloys with different Cr content of the alloys, are calculated by first-principles method. The calculations in this paper are carried out by VASP (Vienna ab-initio simulation package) software package, which is based on the density functional theory. The generalized gradient approximation is selected to deal with the exchange correlation energy of electrons. And the special k-point sample of the Monkhorst-Pack type is used in the Brillouin-zone integration. The effects of Cr content on the electronic stability and corrosion resistance of the alloy are discussed. In this paper, the Ti-25 at.%Nb alloy with the stable β-phase is a matrix material, and Ti12Nb4 supercell model is adopted, in which 1 to 4 Ti atoms are replaced by the Cr atoms, respectively. In energetics, the sequence of the cohesive capacity of the system is as follows:Ti12Nb4 11Nb4Cr1 10Nb4Cr2 9Nb4Cr3 8Nb4Cr4, showing that the stability of the structure decreases with Cr content increasing. While the formation energy of the system energy shows a gradual increase trend with the increase of Cr, indicating that the formation of the system becomes gradually difficult when adding more Cr atoms. The Fermi level of the ternary alloy system containing Cr element is much lower than that of Ti12Nb4 alloy and tends to decrease slightly with the increase of Cr content. That means that with increasing the Cr content, the alloy system is not easy to lose electrons, and thus the corrosion resistance is improved. And when the Cr content is around 18.75 at.%, there should be an optimal Cr concentration for corrosion resistance. The differential charge density diagrams show that with the increase of Cr content, the covalent bonding of the system is weakened, while the metal bonding is strengthened, which makes the electronic structure of the system more stable and thus the corrosion resistance is improved. The DOS shows that the Fermi level is not zero, indicating the metallic behavior of the alloy. With the increase of Cr content in the alloy system, the pseudo-energy gap gradually disappears, indicating that the structural stability of the system decreases accordingly, which is consistent with the calculation result of the density of states. The maximum value of the DOS diagram is shifted toward the lower energy level area, showing that the stability of the electronic structure of the system is improved so that the corrosion resistance of the alloy is enhanced. And the maximum value of the DOS also shows that when the Cr content is around 18.75 at.%, there is an optimal Cr concentration for corrosion resistance.
      通信作者: 刘艳侠, ldlyx@163.com
    • 基金项目: 国家重点研发计划(批准号:2016YFB0701304)资助的课题.
      Corresponding author: Liu Yan-Xia, ldlyx@163.com
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFB0701304).
    [1]

    Abdelhady M, Hinoshita K, Fuwa H, Murata Y, Morinaga M 2008 Mater. Sci. Eng. A 480 167

    [2]

    Zhao X L, Niinomi M, Nakai M, Ishimoto T, Nakano T 2011 Mater. Sci. Eng. C 31 1436

    [3]

    Ozan S, Lin J, Li Y, Ipek R, Wen C 2015 Acta Biomater. 20 176

    [4]

    Zhang L C, Lu H B, Mickel C, Eckert J 2007 Appl. Phys. Lett. 91 051906

    [5]

    Li Y H, Yang C, Zhao H D, Qu S G, Li X Q, Li Y Y 2014 Materials 7 1709

    [6]

    Fleischer R L, Zabala R J 1990 Metall. Trans. A 21 2149

    [7]

    Chan K S 2005 Philos. Mag. 85 239

    [8]

    Xue Y L, Li S M, Zhong H, Li K W, Fu H Z 2016 J. Alloys Compd. 684 403

    [9]

    Fujiwara M, Takanashi K, Satou M, Hasegawa A, Abe K, Kakiuchi K, Furuya T 2004 J. Nucl. Mater. 329-333 452

    [10]

    Yu Y J, Kim J G 2002 Mater. Sci. Eng. A 332 140

    [11]

    Takemoto S, Hattori M, Yoshinari M, Kawada E, Asami K, Oda Y 2009 Dent. Mater. 25 467

    [12]

    Xue Y L, Li S M, Li K W, Zhong H, Fu H Z 2015 Mater. Chem. Phys. 167 119

    [13]

    Slokar L, Matković T, Matković P 2012 Mater. Des. 33 26

    [14]

    Thoma D J, Perepezko J H 1995 Annual Meeting and Exhibition of the Minerals, Metals and Materials Society (TMS) Las Vegas, Nevada (United States) February 12-16, 1995 p226

    [15]

    Dong X K, Li S M, Li K W, Xue Y L, Fu H Z 2012 Foundry 61 592 (in Chinese) [董旭坤, 李双明, 李克伟, 薛云龙, 傅恒志 2012 铸造 61 592]

    [16]

    Davidson D L, Chan K S, Anton D L 1996 Metall. Mater. Trans. A 27 3007

    [17]

    Yao Q, Xing H, Guo W Y, Sun J 2008 Chin. J. Nonferrous Met. 18 126 (in Chinese) [姚强, 刑辉, 郭文渊, 孙坚 2008 中国有色金属学报 18 126]

    [18]

    Moreno J J G, Bönisch M, Panagiotopoulos N T, Calin M, Papageorgiou D G, Gebert A, Eckert J, Evangelakis G A, Lekka C E 2017 J. Alloys Compd. 696 481

    [19]

    Karre R, Niranjan M K, Dey S R 2015 Mater. Sci. Eng. C 50 52

    [20]

    Marlo M, Milman V 2000 Phys. Rev. B 62 2899

    [21]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [22]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [23]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671

    [24]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [25]

    Wang W J, Liu Z L, Liu X Q, Zhang Z D, Wang Q D 2014 Chin. J. Nonferrous Met. 24 343 (in Chinese) [王文静, 刘子利, 刘希琴, 张志东, 王渠东 2014 中国有色金属学报 24 343]

    [26]

    Chen G, Zhang P 2013 Def. Technol. 9 131

    [27]

    Liu S Y 2015 M. S. Dissertation (Shenyang:Liaoning University) (in Chinese) [刘思扬 2015 硕士学位论文 (沈阳:辽宁大学)]

    [28]

    Kittel C 1976 Introduction to Solid State Physics (5th Ed.) (New York:John Wiley and Sons,Inc) pp547-548

    [29]

    Sari A, Merad G, Abdelkader H S 2015 Comput. Mater. Sci. 96 348

    [30]

    Zubov V I, Tretiakov N P, Rabelo J N T, Ortiz J F S 1995 Phys. Lett. A 194 223

    [31]

    Song Y, Guo Z X, Yang R, Li D 2001 Acta Mater. 49 1647

    [32]

    Zhang G Y, Zhang H, Fang G L, Yang L N 2009 Acta Metall. Sin. 45 687 (in Chinese) [张国英, 张辉, 方戈亮, 杨丽娜 2009 金属学报 45 687]

    [33]

    Duan Y H, Sun Y, He J H, Peng M J, Guo Z Z 2012 Acta Phys. Sin. 61 046101 (in Chinese) [段永华, 孙勇, 何建洪, 彭明军, 郭中正 2012 物理学报 61 046101]

    [34]

    Zhang G Y, Yang L N, Zhang H, Wu J J 2010 Acta Phys. Sin. 59 2022 (in Chinese) [张国英, 杨丽娜, 张辉, 吴建军 2010 物理学报 59 2022]

    [35]

    Zhang G Y, Zhang H, Zhao Z F, Li Y C 2006 Acta Phys. Sin. 55 2439 (in Chinese) [张国英, 张辉, 赵子夫, 李昱材 2006 物理学报 55 2439]

    [36]

    Djemia P, Benhamida M, Bouamama K, Belliard L, Faurie D, Abadias G 2013 Surf. Coat. Technol. 215 199

    [37]

    Subramanian V, Wolf E E, Kamat P V 2004 J. Am. Chem. Soc. 126 4943

    [38]

    Chen W Z, Li Q, Jiang Z Y, Zhang X D, Si L, Li L S, Wu R 2012 Physica B 407 2744

    [39]

    Shao P, Ding L P, Luo D B, Cai J T, Lu C, Huang X F 2017 J. Alloys Compd. 695 3024

    [40]

    Wu J Y, Zhang B, Zhan Y Z 2017 J. Phys. Chem. Solids 104 207

    [41]

    Peng S, Wu M Q, Wang X F, Zhang S R, He M 2010 Mater. Rev. 24 73 (in Chinese) [彭森, 吴孟强, 王秀锋, 张树人, 何茗 2010 材料导报 24 73]

    [42]

    Yu R, He L L, Ye H Q 2002 Phys. Rev. B 65 184102

  • [1]

    Abdelhady M, Hinoshita K, Fuwa H, Murata Y, Morinaga M 2008 Mater. Sci. Eng. A 480 167

    [2]

    Zhao X L, Niinomi M, Nakai M, Ishimoto T, Nakano T 2011 Mater. Sci. Eng. C 31 1436

    [3]

    Ozan S, Lin J, Li Y, Ipek R, Wen C 2015 Acta Biomater. 20 176

    [4]

    Zhang L C, Lu H B, Mickel C, Eckert J 2007 Appl. Phys. Lett. 91 051906

    [5]

    Li Y H, Yang C, Zhao H D, Qu S G, Li X Q, Li Y Y 2014 Materials 7 1709

    [6]

    Fleischer R L, Zabala R J 1990 Metall. Trans. A 21 2149

    [7]

    Chan K S 2005 Philos. Mag. 85 239

    [8]

    Xue Y L, Li S M, Zhong H, Li K W, Fu H Z 2016 J. Alloys Compd. 684 403

    [9]

    Fujiwara M, Takanashi K, Satou M, Hasegawa A, Abe K, Kakiuchi K, Furuya T 2004 J. Nucl. Mater. 329-333 452

    [10]

    Yu Y J, Kim J G 2002 Mater. Sci. Eng. A 332 140

    [11]

    Takemoto S, Hattori M, Yoshinari M, Kawada E, Asami K, Oda Y 2009 Dent. Mater. 25 467

    [12]

    Xue Y L, Li S M, Li K W, Zhong H, Fu H Z 2015 Mater. Chem. Phys. 167 119

    [13]

    Slokar L, Matković T, Matković P 2012 Mater. Des. 33 26

    [14]

    Thoma D J, Perepezko J H 1995 Annual Meeting and Exhibition of the Minerals, Metals and Materials Society (TMS) Las Vegas, Nevada (United States) February 12-16, 1995 p226

    [15]

    Dong X K, Li S M, Li K W, Xue Y L, Fu H Z 2012 Foundry 61 592 (in Chinese) [董旭坤, 李双明, 李克伟, 薛云龙, 傅恒志 2012 铸造 61 592]

    [16]

    Davidson D L, Chan K S, Anton D L 1996 Metall. Mater. Trans. A 27 3007

    [17]

    Yao Q, Xing H, Guo W Y, Sun J 2008 Chin. J. Nonferrous Met. 18 126 (in Chinese) [姚强, 刑辉, 郭文渊, 孙坚 2008 中国有色金属学报 18 126]

    [18]

    Moreno J J G, Bönisch M, Panagiotopoulos N T, Calin M, Papageorgiou D G, Gebert A, Eckert J, Evangelakis G A, Lekka C E 2017 J. Alloys Compd. 696 481

    [19]

    Karre R, Niranjan M K, Dey S R 2015 Mater. Sci. Eng. C 50 52

    [20]

    Marlo M, Milman V 2000 Phys. Rev. B 62 2899

    [21]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [22]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [23]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671

    [24]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [25]

    Wang W J, Liu Z L, Liu X Q, Zhang Z D, Wang Q D 2014 Chin. J. Nonferrous Met. 24 343 (in Chinese) [王文静, 刘子利, 刘希琴, 张志东, 王渠东 2014 中国有色金属学报 24 343]

    [26]

    Chen G, Zhang P 2013 Def. Technol. 9 131

    [27]

    Liu S Y 2015 M. S. Dissertation (Shenyang:Liaoning University) (in Chinese) [刘思扬 2015 硕士学位论文 (沈阳:辽宁大学)]

    [28]

    Kittel C 1976 Introduction to Solid State Physics (5th Ed.) (New York:John Wiley and Sons,Inc) pp547-548

    [29]

    Sari A, Merad G, Abdelkader H S 2015 Comput. Mater. Sci. 96 348

    [30]

    Zubov V I, Tretiakov N P, Rabelo J N T, Ortiz J F S 1995 Phys. Lett. A 194 223

    [31]

    Song Y, Guo Z X, Yang R, Li D 2001 Acta Mater. 49 1647

    [32]

    Zhang G Y, Zhang H, Fang G L, Yang L N 2009 Acta Metall. Sin. 45 687 (in Chinese) [张国英, 张辉, 方戈亮, 杨丽娜 2009 金属学报 45 687]

    [33]

    Duan Y H, Sun Y, He J H, Peng M J, Guo Z Z 2012 Acta Phys. Sin. 61 046101 (in Chinese) [段永华, 孙勇, 何建洪, 彭明军, 郭中正 2012 物理学报 61 046101]

    [34]

    Zhang G Y, Yang L N, Zhang H, Wu J J 2010 Acta Phys. Sin. 59 2022 (in Chinese) [张国英, 杨丽娜, 张辉, 吴建军 2010 物理学报 59 2022]

    [35]

    Zhang G Y, Zhang H, Zhao Z F, Li Y C 2006 Acta Phys. Sin. 55 2439 (in Chinese) [张国英, 张辉, 赵子夫, 李昱材 2006 物理学报 55 2439]

    [36]

    Djemia P, Benhamida M, Bouamama K, Belliard L, Faurie D, Abadias G 2013 Surf. Coat. Technol. 215 199

    [37]

    Subramanian V, Wolf E E, Kamat P V 2004 J. Am. Chem. Soc. 126 4943

    [38]

    Chen W Z, Li Q, Jiang Z Y, Zhang X D, Si L, Li L S, Wu R 2012 Physica B 407 2744

    [39]

    Shao P, Ding L P, Luo D B, Cai J T, Lu C, Huang X F 2017 J. Alloys Compd. 695 3024

    [40]

    Wu J Y, Zhang B, Zhan Y Z 2017 J. Phys. Chem. Solids 104 207

    [41]

    Peng S, Wu M Q, Wang X F, Zhang S R, He M 2010 Mater. Rev. 24 73 (in Chinese) [彭森, 吴孟强, 王秀锋, 张树人, 何茗 2010 材料导报 24 73]

    [42]

    Yu R, He L L, Ye H Q 2002 Phys. Rev. B 65 184102

  • [1] 王家旭, 张一心, 马圣然, 李昊泽, 罗鸿志. Ni2Cu基Heusler合金的电子结构、弹性参数与马氏体相变的第一性原理研究. 物理学报, 2025, 74(4): 047101. doi: 10.7498/aps.74.20241485
    [2] 刘飞, 文志鹏. Zr, Nb, V在α-Fe(C)中的占位、电子结构及键合作用的第一性原理研究. 物理学报, 2019, 68(13): 137101. doi: 10.7498/aps.68.20182282
    [3] 胡洁琼, 谢明, 陈家林, 刘满门, 陈永泰, 王松, 王塞北, 李爱坤. Ti3AC2相(A = Si,Sn,Al,Ge)电子结构、弹性性质的第一性原理研究. 物理学报, 2017, 66(5): 057102. doi: 10.7498/aps.66.057102
    [4] 沈杰, 魏宾, 周静, Shen Shirley Zhiqi, 薛广杰, 刘韩星, 陈文. Ba(Mg1/3Nb2/3)O3电子结构第一性原理计算及光学性能研究. 物理学报, 2015, 64(21): 217801. doi: 10.7498/aps.64.217801
    [5] 徐晶, 梁家青, 李红萍, 李长生, 刘孝娟, 孟健. Ti掺杂NbSe2电子结构的第一性原理研究. 物理学报, 2015, 64(20): 207101. doi: 10.7498/aps.64.207101
    [6] 吴木生, 徐波, 刘刚, 欧阳楚英. Cr和W掺杂的单层MoS2电子结构的第一性原理研究. 物理学报, 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [7] 牛雪莲, 王立久, 孙丹. 铬和镍的添加对Fe3Al合金力学性能影响的DFT研究. 物理学报, 2013, 62(3): 037104. doi: 10.7498/aps.62.037104
    [8] 杨则金, 令狐荣锋, 程新路, 杨向东. Cr2MC(M=Al, Ga)的电子结构、弹性和热力学性质的第一性原理研究. 物理学报, 2012, 61(4): 046301. doi: 10.7498/aps.61.046301
    [9] 程亮, 甘章华, 刘威, 赵兴中. (Nb, N)共掺杂锐钛矿电子结构和光学性质的第一性原理研究. 物理学报, 2012, 61(23): 237107. doi: 10.7498/aps.61.237107
    [10] 孙伟峰, 郑晓霞. 第一原理研究界面弛豫对InAs/GaSb超晶格界面结构、能带结构和光学性质的影响. 物理学报, 2012, 61(11): 117301. doi: 10.7498/aps.61.117301
    [11] 张振铎, 侯清玉, 李聪, 赵春旺. Nd高掺杂锐钛矿相TiO2电子结构和吸收光谱的第一原理研究. 物理学报, 2012, 61(11): 117102. doi: 10.7498/aps.61.117102
    [12] 段永华, 孙勇, 何建洪, 彭明军, 郭中正. Pb-Mg-Al合金腐蚀机理的电子理论研究. 物理学报, 2012, 61(4): 046101. doi: 10.7498/aps.61.046101
    [13] 文黎巍, 王玉梅, 裴慧霞, 丁俊. Sb系half-Heusler合金磁性及电子结构的第一性原理研究. 物理学报, 2011, 60(4): 047110. doi: 10.7498/aps.60.047110
    [14] 邓永和, 刘京铄. Mg-TM-H (TM=Sc, Ti, V, Y, Zr, Nb)晶体形成能力和电子性能. 物理学报, 2011, 60(11): 117102. doi: 10.7498/aps.60.117102
    [15] 吴红丽, 赵新青, 宫声凯. Nb掺杂影响NiTi金属间化合物电子结构的第一性原理计算. 物理学报, 2010, 59(1): 515-520. doi: 10.7498/aps.59.515
    [16] 刘君民, 孙立忠, 陈元平, 张凯旺, 袁辉球, 钟建新. 镧铱硅电子结构与成键机理的第一性原理研究. 物理学报, 2009, 58(11): 7826-7832. doi: 10.7498/aps.58.7826
    [17] 吴红丽, 赵新青, 宫声凯. Nb掺杂对TiO2/NiTi界面电子结构影响的第一性原理计算. 物理学报, 2008, 57(12): 7794-7799. doi: 10.7498/aps.57.7794
    [18] 张国英, 张 辉, 赵子夫, 李昱材. 杂质对镁合金耐蚀性影响的电子理论研究. 物理学报, 2006, 55(5): 2439-2443. doi: 10.7498/aps.55.2439
    [19] 徐晓光, 王春忠, 刘 伟, 孟 醒, 孙 源, 陈 岗. Mg掺杂对Li(Co,Al)O2电子结构影响的第一原理研究. 物理学报, 2005, 54(1): 313-316. doi: 10.7498/aps.54.313
    [20] 徐晓光, 魏英进, 孟醒, 王春忠, 黄祖飞, 陈岗. Mg, Al掺杂对LiCoO2体系电子结构影响的第一原理研究. 物理学报, 2004, 53(1): 210-213. doi: 10.7498/aps.53.210
计量
  • 文章访问数:  6867
  • PDF下载量:  139
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-14
  • 修回日期:  2018-07-12
  • 刊出日期:  2018-10-05

/

返回文章
返回