搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Yb浓度对功率依赖的上转换荧光色彩的敏感度调控

高当丽 李蓝星 冯小娟 种波 辛红 赵瑾 张翔宇

引用本文:
Citation:

Yb浓度对功率依赖的上转换荧光色彩的敏感度调控

高当丽, 李蓝星, 冯小娟, 种波, 辛红, 赵瑾, 张翔宇

Regulation of sensitivity of Yb concentration to power-dependent upconversion luminescence colors

Gao Dang-Li, Li Lan-Xing, Feng Xiao-Juan, Chong Bo, Xin Hong, Zhao Jin, Zhang Xiang-Yu
PDF
导出引用
  • 控制激发光功率密度是一种调控红绿荧光比率的简单方法.然而,大多数上转换系统对功率的调控并不敏感.本文通过柠檬酸钠辅助的水热法,合成了一系列具有不同Yb浓度掺杂的NaYF4:Yb/Ho微米棒.通过激光共聚焦显微镜系统,研究了Yb浓度和激发功率密度依赖的NaYF4:Yb/Ho微米棒的上转换荧光特性.发射谱和同步荧光成像图案表明:荧光红绿比率不仅敏感于激发功率,而且敏感度依赖于Yb浓度.随着Yb浓度的增加,功率调控的红绿比率的敏感度增加,这暗示了功率调控的红绿比率的敏感度可以作为一种度量和评估Yb掺杂浓度的有效途径和方法.通过上/下转换发射谱、激发谱和功率依赖关系,揭示了功率调控红绿比率的机理,并提出了荧光色彩敏感于功率调控的上转换系统具有的特征和判据.本研究为设计和合成高敏感度的功率调控的上转换材料提供了理论基础和实验数据.
    Controlling the power density of exciting light is a widely applied technological approach to dynamically tuning emission spectra to yield desirable luminescence properties, which is essential for various applications in laser devices, cancer cell imaging, biomarker molecule detections, thermometers and optoelectronic devices. However, most of upconversion systems are insensitive to power regulation. In this study, a series of Yb/Ho doped NaYF4 microrods with different Yb concentrations was synthesized by using a sodium citrate-assisted hydrothermal method. The dependence of upconversion characteristics of NaYF4:Yb/Ho microrods on Yb concentration and excitation power density are investigated in detail by a laser confocal microscopy system. The emission spectra exhibit discrete upconversion emission characteristic peaks that can easily be assigned to 5F3→5I8 (at about 488 nm), 5F4, 5S2→5I8 (at about 543 nm), 3K7, 5G4→5I8 (at about 580 nm) and 5F5→5I8 (at about 648 nm) transitions of Ho, respectively. The upconversion spectra and synchronous luminescence imaging patterns show that the luminescence ratio of red to green is not only dependent on the Yb concentration, but also sensitive to the excitation power. With Yb concentration increasing from 5% to 60%, the sensitivity of the power-controlled red to green luminescence ratio largely increases from 0.1% to 13.0%, corresponding to a clear luminescent color modification from green to red. These results indicate that the power-tuned red-to-green-luminescence ratio can be used as a method of measuring and evaluating Yb doping concentration. We attribute the sensitivity tuned by Yb concentration to the differences in population approach and upconversion mechanism for the red and green luminescence. By recording the slope of luminescence intensity versus exciting power density in a double-logarithmic presentation, we detect a small slope for the green emission relative to that for the red emission, especially at a high Yb concentration. These results indicate that the red upconversion process may be a three-photon process. The exciting power induced color adjusting is therefore explained by preferential three-photon population of the red emission due to the high 5S2→5G4 excitation rate, which is verified by down-conversions of emission spectra. Our present study provides a theoretical basis for the spectral tailoring of rare-earth micro/nano materials and supplies a foundation for the applications in rare-earth materials.
      通信作者: 高当丽, gaodangli@163.com
    • 基金项目: 国家自然科学基金(批准号:11604253)、陕西省自然科学基础研究计划(批准号:2018JM1036)、中央高校基本科研业务费(批准号:310812171004,310812161001)、中国博士后科学基金(批准号:2015M570816)、2017年省级大学生创新创业训练计划项目(批准号:1229)和西安建筑科技大学本科生科研训练(SSRT)计划资助的课题.
      Corresponding author: Gao Dang-Li, gaodangli@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11604253), the Natural Science Foundation of Shaanxi Province of China (Grant No. 2018JM1036), the Fundamental Research Fund for the Central Universities, China (Grant Nos. 310812171004, 310812161001), the China Postdoctoral Science Foundation (Grant No. 2015M570816), the Provincial Undergraduate Training Program for Innovation and Entrepreneurship, China (Grant No. 1229), and the Undergraduate Scientific Research Training Plan (SSRT) of Xi'an University of Architecture and Technology, China.
    [1]

    Auzel F 1966 CR Acad. Sci. Paris 263 819

    [2]

    Wang F, Banerjee D, Liu Y, Chen X, Liu X 2010 Analyst 135 1839

    [3]

    Ai X Z, Ho C J H, Aw J X, Attia A B E, Mu J, Wang Y, Wang X Y, Wang Y, Liu X G, Chen H B, Gao M Y, Chen X Y, Yeow E K L, Liu G, Olivo M, Xing B J 2016 Nat. Commun. 7 10432

    [4]

    Zheng S H, Chen W B, Tan D Z, Zhou J J, Guo Q B, Jiang W, Xu C, Liu X F, Qiu J R 2014 Nanoscale 6 5675

    [5]

    Wickberg A, Mueller J B, Mange Y J, Fischer J, Nann T, Wegener M 2015 Appl. Phys. Lett. 106 133103

    [6]

    Dey R, Rai V K 2014 Dalton Trans. 43 111

    [7]

    Azam M, Rai V K 2017 Solid State Sci. 66 7

    [8]

    Chen G Y, Shen J, Ohulchanskyy T Y, Patel N J, Kutikov A, Li Z P, Song J, Pandey R K, Ågren H, Prasad P N, Han G 2012 ACS Nano 6 8280

    [9]

    Hong G, Antaris A L, Dai H 2017 Nat. Biomed. Engineer. 1 0010

    [10]

    Pepin P A, Diroll B T, Choi H J, Murray C B, Vohs J M 2017 J. Phys. Chem. C 121 11488

    [11]

    Erogbogbo F, Yong K T, Roy I, Hu R, Law W C, Zhao W, Prasad P N, Ding H, Wu F, Kumar R, Swihart M T 2010 ACS Nano 5 413

    [12]

    Yang Y, Mi C, Jiao F Y, Su X Y, Li X D, Liu L L, Zhang J, Yu F, Liu Y Z, Mai Y H 2014 J. Am. Ceram. Soc. 97 1769

    [13]

    Zhang Z Y, Suo H, Zhao X Q, Sun D, Fan L, Guo C F 2018 ACS Appl. Mater. Interfaces 10 14570

    [14]

    Suo H, Zhao X, Zhang Z, Shi R, Wu Y, Xiang J, Guo C 2018 Nanoscale 10 9245

    [15]

    Wang L, Li Y 2007 Chem. Mater. 19 727

    [16]

    Gao D L, Wang D, Zhang X Y, Feng X Y, Xin H, Yun S N, Tian D P 2018 J. Mater. Chem. C 6 622

    [17]

    Zhang X Y, Wang D, Shi H W, Wang J G, Hou Z Y, Zhang L D, Gao D L 2018 Acta Phys. Sin. 67 84203 (in Chinese) [张翔宇, 王丹, 石焕文, 王晋国, 侯兆阳, 张力东, 高当丽 2018 物理学报 67 84203]

    [18]

    Gao D L, Zhang X Y, Chong B, Xiao G Q, Tian D P 2017 Phys. Chem. Chem. Phys. 19 4288

    [19]

    Zhou B, Shi B, Jin D, Liu X 2015 Nat. Nanotech. 10 924

    [20]

    Gao D L, Zhang X Y, Zheng H R, Shi P, Li L, Ling Y W 2013 Dalton Trans. 42 1834

    [21]

    Gao D L, Zhang X Y, Zheng H R, Gao W, He E J 2013 J. Alloys Compd. 554 395

    [22]

    Shao W, Chen G, Kuzmin A, Kutscher H L, Pliss A, Ohulchanskyy T Y, Prasad P N 2016 J. Am. Chem. Soc. 138 16192

    [23]

    Gao D L, Zhang X Y, Gao W 2013 ACS Appl. Mater. Interfaces 5 9732

    [24]

    Gao D L, Tian D P, Zhang X Y, Gao W 2016 Sci. Rep. 6 22433

    [25]

    Yi G S, Chow G M 2005 J. Mater. Chem. 15 4460

    [26]

    Chen B, Liu Y, Xiao Y, Chen X, Li Y, Li M Y, Qiao X S, Fan X P, Wang F 2016 J. Phys. Chem. Lett. 7 4916

    [27]

    Gao W, Wang R, Han Q, Dong J, Yan L, Zheng H 2015 J. Phys. Chem. C 119 2349

    [28]

    Gao D, Zhang X, Pang Q, Zhao J, Xiao G, Tian D 2018 J. Mater. Chem. C 6 8011

    [29]

    Deng K, Gong T, Hu L, Wei X, Chen Y, Yin M 2011 Opt. Exp. 19 1749

    [30]

    Wang L, Lan M, Liu Z, Qin G, Wu C, Wang X, Qin W, Huang W, Huang L 2013 J. Mater. Chem. C 1 2485

    [31]

    Wang M Y, Tian Y, Zhao F Y, Li R F, You W W, Fang Z L, Chen X Y, Huang W, Ju Q 2017 J. Mater. Chem. C 5 1537

    [32]

    Zhang J H, Hao Z D, Li J, Zhang X, Luo Y S, Pan G H 2015 Light: Sci. Appl. 4 e239

    [33]

    Gamelin D R, Gudel H U 2001 Transition Metal and Rare Earth Compounds (Vol. 214) (Berlin, Heidelberg: Springer) p1

    [34]

    Luthi S R, Pollnau M, Gudel H U, Hehlen M P 1999 Phys. Rev. B 60 162

    [35]

    Pollnau M, Gamelin D R, Luthi S R, Gudel H U, Hehlen M P 2000 Phys. Rev. B 61 3337

    [36]

    Yang Y M, Jiao F Y, Su H X, Li Z Q, Liu Y F, Li Z Q, Yang Z P 2012 Spectrosc. Spect. Anal. 32 2637 (in Chinese) [杨艳民, 焦福运, 苏红新, 李自强, 刘云峰, 李志强, 杨志平 2012 光谱学与光谱分析 32 2637]

  • [1]

    Auzel F 1966 CR Acad. Sci. Paris 263 819

    [2]

    Wang F, Banerjee D, Liu Y, Chen X, Liu X 2010 Analyst 135 1839

    [3]

    Ai X Z, Ho C J H, Aw J X, Attia A B E, Mu J, Wang Y, Wang X Y, Wang Y, Liu X G, Chen H B, Gao M Y, Chen X Y, Yeow E K L, Liu G, Olivo M, Xing B J 2016 Nat. Commun. 7 10432

    [4]

    Zheng S H, Chen W B, Tan D Z, Zhou J J, Guo Q B, Jiang W, Xu C, Liu X F, Qiu J R 2014 Nanoscale 6 5675

    [5]

    Wickberg A, Mueller J B, Mange Y J, Fischer J, Nann T, Wegener M 2015 Appl. Phys. Lett. 106 133103

    [6]

    Dey R, Rai V K 2014 Dalton Trans. 43 111

    [7]

    Azam M, Rai V K 2017 Solid State Sci. 66 7

    [8]

    Chen G Y, Shen J, Ohulchanskyy T Y, Patel N J, Kutikov A, Li Z P, Song J, Pandey R K, Ågren H, Prasad P N, Han G 2012 ACS Nano 6 8280

    [9]

    Hong G, Antaris A L, Dai H 2017 Nat. Biomed. Engineer. 1 0010

    [10]

    Pepin P A, Diroll B T, Choi H J, Murray C B, Vohs J M 2017 J. Phys. Chem. C 121 11488

    [11]

    Erogbogbo F, Yong K T, Roy I, Hu R, Law W C, Zhao W, Prasad P N, Ding H, Wu F, Kumar R, Swihart M T 2010 ACS Nano 5 413

    [12]

    Yang Y, Mi C, Jiao F Y, Su X Y, Li X D, Liu L L, Zhang J, Yu F, Liu Y Z, Mai Y H 2014 J. Am. Ceram. Soc. 97 1769

    [13]

    Zhang Z Y, Suo H, Zhao X Q, Sun D, Fan L, Guo C F 2018 ACS Appl. Mater. Interfaces 10 14570

    [14]

    Suo H, Zhao X, Zhang Z, Shi R, Wu Y, Xiang J, Guo C 2018 Nanoscale 10 9245

    [15]

    Wang L, Li Y 2007 Chem. Mater. 19 727

    [16]

    Gao D L, Wang D, Zhang X Y, Feng X Y, Xin H, Yun S N, Tian D P 2018 J. Mater. Chem. C 6 622

    [17]

    Zhang X Y, Wang D, Shi H W, Wang J G, Hou Z Y, Zhang L D, Gao D L 2018 Acta Phys. Sin. 67 84203 (in Chinese) [张翔宇, 王丹, 石焕文, 王晋国, 侯兆阳, 张力东, 高当丽 2018 物理学报 67 84203]

    [18]

    Gao D L, Zhang X Y, Chong B, Xiao G Q, Tian D P 2017 Phys. Chem. Chem. Phys. 19 4288

    [19]

    Zhou B, Shi B, Jin D, Liu X 2015 Nat. Nanotech. 10 924

    [20]

    Gao D L, Zhang X Y, Zheng H R, Shi P, Li L, Ling Y W 2013 Dalton Trans. 42 1834

    [21]

    Gao D L, Zhang X Y, Zheng H R, Gao W, He E J 2013 J. Alloys Compd. 554 395

    [22]

    Shao W, Chen G, Kuzmin A, Kutscher H L, Pliss A, Ohulchanskyy T Y, Prasad P N 2016 J. Am. Chem. Soc. 138 16192

    [23]

    Gao D L, Zhang X Y, Gao W 2013 ACS Appl. Mater. Interfaces 5 9732

    [24]

    Gao D L, Tian D P, Zhang X Y, Gao W 2016 Sci. Rep. 6 22433

    [25]

    Yi G S, Chow G M 2005 J. Mater. Chem. 15 4460

    [26]

    Chen B, Liu Y, Xiao Y, Chen X, Li Y, Li M Y, Qiao X S, Fan X P, Wang F 2016 J. Phys. Chem. Lett. 7 4916

    [27]

    Gao W, Wang R, Han Q, Dong J, Yan L, Zheng H 2015 J. Phys. Chem. C 119 2349

    [28]

    Gao D, Zhang X, Pang Q, Zhao J, Xiao G, Tian D 2018 J. Mater. Chem. C 6 8011

    [29]

    Deng K, Gong T, Hu L, Wei X, Chen Y, Yin M 2011 Opt. Exp. 19 1749

    [30]

    Wang L, Lan M, Liu Z, Qin G, Wu C, Wang X, Qin W, Huang W, Huang L 2013 J. Mater. Chem. C 1 2485

    [31]

    Wang M Y, Tian Y, Zhao F Y, Li R F, You W W, Fang Z L, Chen X Y, Huang W, Ju Q 2017 J. Mater. Chem. C 5 1537

    [32]

    Zhang J H, Hao Z D, Li J, Zhang X, Luo Y S, Pan G H 2015 Light: Sci. Appl. 4 e239

    [33]

    Gamelin D R, Gudel H U 2001 Transition Metal and Rare Earth Compounds (Vol. 214) (Berlin, Heidelberg: Springer) p1

    [34]

    Luthi S R, Pollnau M, Gudel H U, Hehlen M P 1999 Phys. Rev. B 60 162

    [35]

    Pollnau M, Gamelin D R, Luthi S R, Gudel H U, Hehlen M P 2000 Phys. Rev. B 61 3337

    [36]

    Yang Y M, Jiao F Y, Su H X, Li Z Q, Liu Y F, Li Z Q, Yang Z P 2012 Spectrosc. Spect. Anal. 32 2637 (in Chinese) [杨艳民, 焦福运, 苏红新, 李自强, 刘云峰, 李志强, 杨志平 2012 光谱学与光谱分析 32 2637]

  • [1] 张翔宇, 王丹, 石焕文, 王晋国, 侯兆阳, 张力东, 高当丽. 基质材料对Yb3+浓度调控的上转换荧光红绿比的影响. 物理学报, 2018, 67(8): 084203. doi: 10.7498/aps.67.20171894
    [2] 白鹏, 张月蘅, 沈文忠. 半导体上转换单光子探测技术研究进展. 物理学报, 2018, 67(22): 221401. doi: 10.7498/aps.67.20180618
    [3] 孙佳石, 李树伟, 石琳琳, 周天民, 李香萍, 张金苏, 程丽红, 陈宝玖. 试验优化设计Er3+/Yb3+共掺BaGd2ZnO5荧光粉及其上转换发光性质. 物理学报, 2015, 64(24): 243301. doi: 10.7498/aps.64.243301
    [4] 潘成龙, 刘红利, 郭芸, 景姝, 孙静, 周禾丰, 王华. BaMgF4:Er3+, Yb3+上转换纳米晶的合成及其发光性能研究. 物理学报, 2014, 63(15): 154211. doi: 10.7498/aps.63.154211
    [5] 翟梓会, 孙佳石, 张金苏, 李香萍, 程丽红, 仲海洋, 李晶晶, 陈宝玖. 试验优化设计Tm3+/Yb3+共掺钼酸钇钠荧光粉上转换发光性质的研究. 物理学报, 2013, 62(20): 203301. doi: 10.7498/aps.62.203301
    [6] 郭琳娜, 王育华. 共沉淀法制备Y2SiO5∶Er3+ ,Yb3+ ,Tm3+及其上转换发光性能研究. 物理学报, 2011, 60(2): 027803. doi: 10.7498/aps.60.027803
    [7] 刘丽莎, 吕树臣, 孙江亭. Er3+/Yb3+共掺TeO2-WO3-Bi2O3玻璃的光谱性质和上转换发光. 物理学报, 2010, 59(9): 6637-6641. doi: 10.7498/aps.59.6637
    [8] 张丹, 王兆明, 王艳双, 薄淑辉, 甄珍, 张大明. LaF3∶Er,Yb纳米颗粒掺杂有机/无机杂化材料制备光波导放大器及特性研究. 物理学报, 2009, 58(3): 1675-1678. doi: 10.7498/aps.58.1675
    [9] 董力强, 黄世华, 贾晓霞, 陈宝玖. 方波激发下Er3+上转换绿光发光动力学过程的研究. 物理学报, 2009, 58(3): 2061-2066. doi: 10.7498/aps.58.2061
    [10] 董力强, 黄世华, 温红宇, 杨艳民, 王大伟, 段晓霞. Er3+-Yb3+共掺碲酸盐玻璃上转换绿光激发过程的研究. 物理学报, 2009, 58(12): 8617-8622. doi: 10.7498/aps.58.8617
    [11] 李成仁, 明成国, 李淑凤, 丁建华, 王宝成, 张 丽. 镱铒共掺Al2O3薄膜上转换机理及其温度特性. 物理学报, 2008, 57(10): 6604-6608. doi: 10.7498/aps.57.6604
    [12] 金 鑫, 张晓丹, 雷志芳, 熊绍珍, 宋 峰, 赵 颖. 薄膜太阳电池用纳米上转换材料制备及其特性研究. 物理学报, 2008, 57(7): 4580-4584. doi: 10.7498/aps.57.4580
    [13] 罗建乔, 孙敦陆, 张庆礼, 刘文鹏, 谷长江, 吴路生, 殷绍唐. Er3+/Yb3+共掺Gd3Sc2Ga3O12晶体的上转换发光. 物理学报, 2008, 57(12): 7712-7716. doi: 10.7498/aps.57.7712
    [14] 韩 琳, 宋 峰, 邹昌光, 苏 静, 闫立华, 田建国, 张光寅. Tm3+离子掺杂的钨酸钇钠晶体中浓度猝灭效应的研究. 物理学报, 2007, 56(7): 4187-4193. doi: 10.7498/aps.56.4187
    [15] 戴世勋, 厉旭杰, 聂秋华, 徐铁峰, 沈 祥, 王训四. Yb3+敏化的Er3+/Ho3+共掺碲酸盐玻璃的上转换发光研究. 物理学报, 2007, 56(9): 5518-5525. doi: 10.7498/aps.56.5518
    [16] 丁庆磊, 肖思国, 张向华, 夏艳琴, 刘政威. 980 nm激发下Er3+/Yb3+共掺杂ZrO2-Al2O3粉末的上转换发光特性. 物理学报, 2006, 55(10): 5140-5144. doi: 10.7498/aps.55.5140
    [17] 陈晓波, 蔡 青, 王 策. Pr(0.5):ZBLAN的双频激发上转换发光的研究. 物理学报, 2004, 53(12): 4382-4386. doi: 10.7498/aps.53.4382
    [18] 谭 浩, 宋 峰, 苏 静, 商美茹, 付 博, 张光寅, 程振祥, 陈焕矗. Er3+,Tm3+共掺的NaY(WO4)2晶体的光谱分析和上转换发光. 物理学报, 2004, 53(2): 631-635. doi: 10.7498/aps.53.631
    [19] 吴长锋, 秦伟平, 秦冠仕, 黄世华, 张继森, 赵 丹, 吕少哲, 林海燕, 刘晃清. TiO2∶Mo体系的光子雪崩上转换. 物理学报, 2003, 52(6): 1540-1544. doi: 10.7498/aps.52.1540
    [20] 冯衍, 宋峰, 赵丽娟, 张潮波, 郭红沧, 张光寅. LD抽运Nd:YVO4晶体中的上转换及其影响. 物理学报, 2001, 50(2): 335-340. doi: 10.7498/aps.50.335
计量
  • 文章访问数:  3217
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-13
  • 修回日期:  2018-09-14
  • 刊出日期:  2019-11-20

Yb浓度对功率依赖的上转换荧光色彩的敏感度调控

  • 1. 西安建筑科技大学理学院, 西安 710055;
  • 2. 长安大学理学院, 西安 710064
  • 通信作者: 高当丽, gaodangli@163.com
    基金项目: 国家自然科学基金(批准号:11604253)、陕西省自然科学基础研究计划(批准号:2018JM1036)、中央高校基本科研业务费(批准号:310812171004,310812161001)、中国博士后科学基金(批准号:2015M570816)、2017年省级大学生创新创业训练计划项目(批准号:1229)和西安建筑科技大学本科生科研训练(SSRT)计划资助的课题.

摘要: 控制激发光功率密度是一种调控红绿荧光比率的简单方法.然而,大多数上转换系统对功率的调控并不敏感.本文通过柠檬酸钠辅助的水热法,合成了一系列具有不同Yb浓度掺杂的NaYF4:Yb/Ho微米棒.通过激光共聚焦显微镜系统,研究了Yb浓度和激发功率密度依赖的NaYF4:Yb/Ho微米棒的上转换荧光特性.发射谱和同步荧光成像图案表明:荧光红绿比率不仅敏感于激发功率,而且敏感度依赖于Yb浓度.随着Yb浓度的增加,功率调控的红绿比率的敏感度增加,这暗示了功率调控的红绿比率的敏感度可以作为一种度量和评估Yb掺杂浓度的有效途径和方法.通过上/下转换发射谱、激发谱和功率依赖关系,揭示了功率调控红绿比率的机理,并提出了荧光色彩敏感于功率调控的上转换系统具有的特征和判据.本研究为设计和合成高敏感度的功率调控的上转换材料提供了理论基础和实验数据.

English Abstract

参考文献 (36)

目录

    /

    返回文章
    返回