搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Rydberg原子的电磁诱导透明光谱的噪声转移特性

贾玥 陈肖含 张好 张临杰 肖连团 贾锁堂

引用本文:
Citation:

Rydberg原子的电磁诱导透明光谱的噪声转移特性

贾玥, 陈肖含, 张好, 张临杰, 肖连团, 贾锁堂

Noise transfer characteristics of Rydberg electromagnetically induced transparency

Jia Yue1\2, Chen Xiao-Han1\2, Zhang Hao1\2, Zhang Lin-Jie1\2, Xiao Lian-Tuan1\2, Jia Suo-Tang1\2
PDF
导出引用
  • 基于马赫-曾德尔干涉仪和平衡零拍探测技术研究了Cs原子6S1/2↔6P3/2↔62D5/2Rydberg态阶梯型三能级系统电磁诱导透明效应中耦合光场的噪声向探测光场相位噪声的转移特性.实验中探测光频率锁定在Cs原子6S1/2↔6P3/2态共振跃迁线上,通过扫描6P3/2到62D5/2态跃迁的耦合光频率,测量了Rydberg态电磁诱导透明光谱.利用探测光经过声光调制器后的一级衍射光实现了马赫-曾德尔干涉仪的相位锁定,测量了不同锁定相位情况下的电磁诱导透明光谱,实验结果与阶梯型三能级系统的理论计算结果符合得很好.在此基础上详细研究了耦合光频率共振在6P3/2到62D5/2态跃迁线上时,耦合光频率噪声向探测光相位噪声的转移特性,发现耦合光频率噪声转移效率在高频处显示出较明显的抑制.同时观察到耦合光在不同失谐情况时,随着耦合光功率的改变,探测光相位噪声的变化特征表现出明显差异.
    The transfer mechanism from the amplitude noise of the coupling light to the phase noise of the probe light in a Rydberg electromagnetic induced transparency effect derived from a ladder-type system including 6S1/2↔6P3/2↔62D5/2 of Cs atoms is demonstrated by using Mach-Zehnder interferometer and balanced homodyne detection technology. In our experiments, the transmission signal of 852 nm probe light is measured by scanning the coupling light frequency nearby the transition from 6P3/2 to 62D5/2 Rydberg state, while the frequency of the probe light is locked at the resonance transition of the 6S1/2↔6P3/2. The relative phase stability of two arms of Mach-Zehnder interferometer, which is constructed with the first order diffraction light of probe light through an acoustic-optic modulator, is accomplished by the controlled piezoelectric ceramic with the PID feedback loop. The interferences between the probe light and the reference light of Mach-Zehnder interferometer under the different relative phases are observed. The interference spectrum of probe light is in good agreement with the theoretical simulation result of the ladder-type three-level system. Therefore, we study the transfer characteristics from the frequency noise of coupling light to the phase noise of probe light when coupling light frequency resonance happens at the transition 6P3/2↔62D5/2. We find the significant suppression of the phase noise of probe light at the higher frequency noise. Moreover, we observe the characteristics of the phase noise of the probe light varying with the power of the coupling light under the different detuning degrees of coupling light. In the red detuning side, the transferred phase noise of probe light decreases with the increase of coupling light power, which is different significantly from the scenario under the blue detuning condition. The ions produced in the ionization process of Rydberg atoms will form the local electric field that would cause the energy level of Rydberg states to shift. The investigation of the noise transfer between the coupling light and probe light in the Rydberg electromagnetically induced transparency effect is important for understanding the coherence mechanism of ladder-type system and the some potential applications, such as in Rydberg-atom-based electric field metrology.
      通信作者: 张临杰, zlj@sxu.edu.cn
    • 基金项目: 国家重点研发计划(批准号:2017YFA0344200,2016YFF0200104)、国家自然科学基金(批准号:91536110,61505099)、山西省"1331工程"重点学科建设计划和山西省"百人计划"资助的课题.
      Corresponding author: Zhang Lin-Jie1\2, zlj@sxu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0344200, 2016YFF0200104), the National Natural Science Foundation of China (Grant Nos. 91536110, 61505099), the Fund for Shanxi "1331 Project" Key Subjects Construction, China, and the BAIREN Plan of Shanxi Province, China.
    [1]

    Boller K J, Imamolu A, Harris S E 1991 Phys. Rev. Lett. 66 2593

    [2]

    Hopkins S A, Usadi E, Chen H X, Durrant A V 1997 Opt. Commun. 138 185

    [3]

    Jiao Y C, Han X X, Yang Z W, Zhao J M, Jia S T 2016 Chin. Phys. Lett. 33 123201

    [4]

    Zhao Y, Wu C K, Ham B S, Kim M K, Awad E 1997 Phys. Rev. Lett. 79 641

    [5]

    Schmidy H, Imamoglu A 1996 Opt. Commun. 131 333

    [6]

    Tan C H, Huang G X 2014 J. Opt. Soc. Am. 31 704

    [7]

    Fleischhauer M, Lukin M D 2000 Phys. Rev. Lett. 84 5094

    [8]

    Fleischhauer M, Lukin M D 2002 Phys. Rev. A 65 022314

    [9]

    Lukin M D, Yelin S F, Fleischhauer M 2000 Phys. Rev. Lett. 84 4232

    [10]

    Liu C, Dutton Z, Behroozi C H, Hau L V 2001 Nature 409 490

    [11]

    Phillips D F, Fleischhauer A, Mair A, Walsworth R L, Lukin M D 2001 Phys. Rev. Lett. 86 783

    [12]

    Jurgen A, Eden F, Korystov D, Lobino M, Lvovsky A I 2008 Phys. Rev. Lett. 100 093602

    [13]

    Honda K, Akamatsu D, Arikawa M, Yokoi Y, Akiba K, Nagatsuka S, Tanimura T, Furusawa A, Kozuma M 2008 Phys. Rev. Lett. 100 093601

    [14]

    Degen C L, Reinhard F, Cappellaro P 2017 Rev. Mod. Phys. 89 035002

    [15]

    Yan L Y, Liu J S, Zhang H, Zhang L J, Xiao L T, Jia S T 2017 Acta Phys. Sin. 66 243201 (in Chinese)[闫丽云, 刘家晟, 张好, 张临杰, 肖连团, 贾锁堂 2017 物理学报 66 243201]

    [16]

    Kumar S, Fan H, Kbler H, Sheng J, Shaffer J P 2017 Sci. Rep. 7 42981

    [17]

    Hsu M T L, Hetet G, Glockl O, Longdell J J, Buchler B C, Bachor H A, Lam P K 2006 Phys. Rev. Lett. 97 183601

    [18]

    Zhang J X, Cai J, Bai Y F, Gao J R, Zhu S Y 2007 Phys. Rev. A 76 033814

    [19]

    Xiao Y H, Wang T, Baryakhtar M, Camp M, Crescimanno M, Hohensee M, Jiang L, Phillips D F, Lukin M D, Yelin S F, Walsworth R L 2009 Phys. Rev. A 80 041805

    [20]

    Li Y, Cai D H, Ma R, Dan W, Gao J R, Zhang J X 2012 Appl. Phys. B 109 189

    [21]

    Li Z H, Li Y, Dou Y F, Zhang J X 2012 Chin. Phys. B 21 034204

    [22]

    Weller D, Urvoy A, Rico A, Löw R, Kbler H 2016 Phys. Rev. A 94 063820

  • [1]

    Boller K J, Imamolu A, Harris S E 1991 Phys. Rev. Lett. 66 2593

    [2]

    Hopkins S A, Usadi E, Chen H X, Durrant A V 1997 Opt. Commun. 138 185

    [3]

    Jiao Y C, Han X X, Yang Z W, Zhao J M, Jia S T 2016 Chin. Phys. Lett. 33 123201

    [4]

    Zhao Y, Wu C K, Ham B S, Kim M K, Awad E 1997 Phys. Rev. Lett. 79 641

    [5]

    Schmidy H, Imamoglu A 1996 Opt. Commun. 131 333

    [6]

    Tan C H, Huang G X 2014 J. Opt. Soc. Am. 31 704

    [7]

    Fleischhauer M, Lukin M D 2000 Phys. Rev. Lett. 84 5094

    [8]

    Fleischhauer M, Lukin M D 2002 Phys. Rev. A 65 022314

    [9]

    Lukin M D, Yelin S F, Fleischhauer M 2000 Phys. Rev. Lett. 84 4232

    [10]

    Liu C, Dutton Z, Behroozi C H, Hau L V 2001 Nature 409 490

    [11]

    Phillips D F, Fleischhauer A, Mair A, Walsworth R L, Lukin M D 2001 Phys. Rev. Lett. 86 783

    [12]

    Jurgen A, Eden F, Korystov D, Lobino M, Lvovsky A I 2008 Phys. Rev. Lett. 100 093602

    [13]

    Honda K, Akamatsu D, Arikawa M, Yokoi Y, Akiba K, Nagatsuka S, Tanimura T, Furusawa A, Kozuma M 2008 Phys. Rev. Lett. 100 093601

    [14]

    Degen C L, Reinhard F, Cappellaro P 2017 Rev. Mod. Phys. 89 035002

    [15]

    Yan L Y, Liu J S, Zhang H, Zhang L J, Xiao L T, Jia S T 2017 Acta Phys. Sin. 66 243201 (in Chinese)[闫丽云, 刘家晟, 张好, 张临杰, 肖连团, 贾锁堂 2017 物理学报 66 243201]

    [16]

    Kumar S, Fan H, Kbler H, Sheng J, Shaffer J P 2017 Sci. Rep. 7 42981

    [17]

    Hsu M T L, Hetet G, Glockl O, Longdell J J, Buchler B C, Bachor H A, Lam P K 2006 Phys. Rev. Lett. 97 183601

    [18]

    Zhang J X, Cai J, Bai Y F, Gao J R, Zhu S Y 2007 Phys. Rev. A 76 033814

    [19]

    Xiao Y H, Wang T, Baryakhtar M, Camp M, Crescimanno M, Hohensee M, Jiang L, Phillips D F, Lukin M D, Yelin S F, Walsworth R L 2009 Phys. Rev. A 80 041805

    [20]

    Li Y, Cai D H, Ma R, Dan W, Gao J R, Zhang J X 2012 Appl. Phys. B 109 189

    [21]

    Li Z H, Li Y, Dou Y F, Zhang J X 2012 Chin. Phys. B 21 034204

    [22]

    Weller D, Urvoy A, Rico A, Löw R, Kbler H 2016 Phys. Rev. A 94 063820

  • [1] 张跃斌, 马成举, 张垚, 金嘉升, 鲍士仟, 李咪, 李东明. 基于非对称结构全介质超材料的类电磁诱导透明效应研究. 物理学报, 2021, 70(19): 194201. doi: 10.7498/aps.70.20210070
    [2] 赵嘉栋, 张好, 杨文广, 赵婧华, 景明勇, 张临杰. 基于里德伯原子电磁诱导透明效应的光脉冲减速. 物理学报, 2021, 70(10): 103201. doi: 10.7498/aps.70.20210102
    [3] 王帅, 眭永兴, 孟祥国. 光子增加双模压缩真空态在马赫-曾德尔干涉仪相位测量中的应用. 物理学报, 2020, 69(12): 124202. doi: 10.7498/aps.69.20200179
    [4] 王越, 冷雁冰, 王丽, 董连和, 刘顺瑞, 王君, 孙艳军. 基于石墨烯振幅可调的宽带类电磁诱导透明超材料设计. 物理学报, 2018, 67(9): 097801. doi: 10.7498/aps.67.20180114
    [5] 李诗宇, 田剑锋, 杨晨, 左冠华, 张玉驰, 张天才. 探测器对量子增强马赫-曾德尔干涉仪相位测量灵敏度的影响. 物理学报, 2018, 67(23): 234202. doi: 10.7498/aps.67.20181193
    [6] 宁仁霞, 鲍婕, 焦铮. 基于石墨烯超表面的宽带电磁诱导透明研究. 物理学报, 2017, 66(10): 100202. doi: 10.7498/aps.66.100202
    [7] 杨光, 王杰, 王军民. 采用高信噪比电磁诱导透明谱测定85Rb原子5D5/2态的超精细相互作用常数. 物理学报, 2017, 66(10): 103201. doi: 10.7498/aps.66.103201
    [8] 黄巍, 梁振涛, 杜炎雄, 颜辉, 朱诗亮. 基于里德堡原子的电场测量. 物理学报, 2015, 64(16): 160702. doi: 10.7498/aps.64.160702
    [9] 杜英杰, 谢小涛, 杨战营, 白晋涛. 电磁诱导透明系统中的暗孤子. 物理学报, 2015, 64(6): 064202. doi: 10.7498/aps.64.064202
    [10] 刘瑞, 於亚飞, 张智明. 利用冷原子系综制备窄线宽三光子频率纠缠态. 物理学报, 2014, 63(14): 144203. doi: 10.7498/aps.63.144203
    [11] 边成玲, 朱江, 陆佳雯, 闫甲璐, 陈丽清, 王增斌, 区泽宇, 张卫平. 基于电磁诱导透明的原子自旋波读出效率实验研究. 物理学报, 2013, 62(17): 174207. doi: 10.7498/aps.62.174207
    [12] 李晓莉, 尚雅轩, 孙江. 射频驱动下电磁诱导透明窗口的分裂和增益的出现. 物理学报, 2013, 62(6): 064202. doi: 10.7498/aps.62.064202
    [13] 王昌辉, 赵国华, 常胜江. 基于光子晶体马赫-曾德尔干涉仪的太赫兹开关及强度调制器. 物理学报, 2012, 61(15): 157805. doi: 10.7498/aps.61.157805
    [14] 吕纯海, 谭磊, 谭文婷. 压缩真空中的电磁诱导透明. 物理学报, 2011, 60(2): 024204. doi: 10.7498/aps.60.024204
    [15] 李晓莉, 张连水, 杨宝柱, 杨丽君. 闭合Λ型4能级系统中的电磁诱导透明和电磁诱导吸收. 物理学报, 2010, 59(10): 7008-7014. doi: 10.7498/aps.59.7008
    [16] 秦文杰, 戴长建, 赵洪英, 肖颖. 利用自电离探测技术研究Sm原子Rydberg态光谱. 物理学报, 2009, 58(1): 209-214. doi: 10.7498/aps.58.209
    [17] 张连水, 李晓莉, 王 健, 杨丽君, 冯晓敏, 李晓苇, 傅广生. 光学-射频双光子耦合作用下的电磁诱导透明和电磁诱导吸收. 物理学报, 2008, 57(8): 4921-4926. doi: 10.7498/aps.57.4921
    [18] 杨丽君, 张连水, 李晓莉, 李晓苇, 郭庆林, 韩 理, 傅广生. 多窗口可调谐电磁诱导透明研究. 物理学报, 2006, 55(10): 5206-5210. doi: 10.7498/aps.55.5206
    [19] 朱云霞, 贺黎明, 曹 伟, 葛自明. 氦原子Rydberg态10G—10M磁精细结构的计算. 物理学报, 2005, 54(11): 5082-5088. doi: 10.7498/aps.54.5082
    [20] 贺黎明, 杨 樾, 陆 慧. 原子实极化效应和钠原子s系列高Rydberg态能级寿命的计算. 物理学报, 2003, 52(6): 1385-1389. doi: 10.7498/aps.52.1385
计量
  • 文章访问数:  5924
  • PDF下载量:  112
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-14
  • 修回日期:  2018-08-27
  • 刊出日期:  2018-11-05

/

返回文章
返回