搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Pt/Au/n-InGaN肖特基接触的电流输运机理

徐峰 于国浩 邓旭光 李军帅 张丽 宋亮 范亚明 张宝顺

引用本文:
Citation:

Pt/Au/n-InGaN肖特基接触的电流输运机理

徐峰, 于国浩, 邓旭光, 李军帅, 张丽, 宋亮, 范亚明, 张宝顺

Current transport mechanism of Schottky contact of Pt/Au/n-InGaN

Xu Feng1\2, Yu Guo-Hao, Deng Xu-Guang, Li Jun-Shuai, Zhang Li, Song Liang, Fan Ya-Ming, Zhang Bao-Shun
PDF
导出引用
  • 基于热电子发射和热电子场发射模式,利用I-V方法研究了Pt/Au/n-InGaN肖特基接触的势垒特性和电流输运机理,结果表明,在不同背景载流子浓度下,Pt/Au/n-InGaN肖特基势垒特性差异明显.研究发现,较低生长温度制备的InGaN中存在的高密度施主态氮空位(VN)缺陷导致背景载流子浓度增高,同时通过热电子发射模式拟合得到高背景载流子浓度的InGaN肖特基势垒高度和理想因子与热电子场发射模式下的结果差别很大,表明VN缺陷诱发了隧穿机理并降低了肖特基势垒高度,相应的隧穿电流显著增大了肖特基势垒总的输运电流,证实热电子发射和缺陷辅助的隧穿机理共同构成了肖特基势垒的电流输运机理.低背景载流子浓度的InGaN肖特基势垒在热电子发射和热电子场发射模式下拟合的结果接近一致,表明热电子发射是其主导的电流输运机理.
    The Pt/Au Schottky contacts to InGaN samples with different background carrier concentrations are fabricated. The crystal qualities of InGaN samples are characterized by X-ray diffraction (XRD) and atomic force microscope (AFM), and the correlation between threading dislocation density of InGaN and growth temperature is further clarified. The full width at half maximum (FWHM) values of the InGaN (0002) XRD rocking curves show that the density of threading dislocations in InGaN, which can seriously deteriorate InGaN crystal quality and surface morphology, decreases rapidly with increasing growth temperature. The Hall measurements show that the background carrier concentration of InGaN increases by two orders of magnitude as growth temperature decreases from 750 to 700℃, which is due to a reduced ammonia decomposition efficiency leading to the presence of high-density donor-type nitrogen vacancy (VN) defects at lower temperature. Therefore, combining the studies of XRD, AFM and Hall, it can be concluded that the higher growth temperature is favorable for realizing the InGaN film with low density of VN defects and threading dislocations for fabricating high-quality Schottky contacts, and then the barrier characteristics and current transport mechanism of Pt/Au/n-InGaN Schottky contact are investigated by current-voltage measurements and theory analysis based on the thermionic emission (TE) model and thermionic field emission (TFE) model. The results show that Schottky characteristics for InGaN with different carrier concentrations manifest obvious differences. It is noted that the high carrier concentration leads to the Schottky barrier height and the ideality factor obtained by TE model are quite different from that by TFE model due to the presence of high density of VN defects. This discrepancy suggests that the VN defects lead to the formation of the tunneling current and further reduced Schottky barrier height. Consequently, the presence of tunneling current results in the increasing of total transport current, which means that the defects-assisted tunneling transport and TE constitute the current transport mechanism in the Schottky. However, the fitted results obtained by TE and TFE models are almost identical for the InGaN with lower carrier concentration, indicating that TE is the dominant current transport mechanism. The above studies prove that the Pt/Au/n-InGaN Schottky contact fabricated using low background carrier concentration shows better Schottky characteristics. Thus, the properly designed growth parameters can effectively suppress defects-assisted tunneling transport, which is crucial to fabricating high-quality Schottky devices.
      通信作者: 徐峰, fxu2018@sinano.ac.cn
    • 基金项目: 江苏省自然科学基金(批准号:BK20161324)、江苏省博士后科研资助计划项目(批准号:2018K008C)、国家自然科学基金(批准号:61704185)和江苏省重点研发计划(批准号:BE2015111,BE2016084)资助的课题.
      Corresponding author: Xu Feng1\2, fxu2018@sinano.ac.cn
    • Funds: Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20161324), the Jiangsu Planned Projects for Postdoctoral Research Funds, China (Grant No. 2018K008C), the National Natural Science Foundation of China (Grant No. 61704185), and the Key Research and Development Program of Jiangsu Province, China (Grant Nos. BE2015111, BE2016084).
    [1]

    Green M A, Emer Y K, Hishikaw A Y, Warta W, Dunlop E D 2013 Prog. Photovolta 21 1

    [2]

    Piprek J, Römer F, Witzigmann B 2015 Appl. Phys. Lett. 106 101101

    [3]

    Aseev P, Rodriguez P, Gómez V J, Alvi N, Mánuel J M, Morales F M, Jiménez J J, García R, Senichev A, Lienau C, Calleja E, Nötzel R 2015 Appl. Phys. Lett. 106 072102

    [4]

    Tang F, Zhu T, Oehler F, Fu W Y, Griffiths J T, Massabuau F C P, Kappers M J, Martin T L, Bagot P A J, Moody M P, Oliver R A 2015 Appl. Phys. Lett. 106 072104

    [5]

    O'donnell K P, Fernandez-Torrente I, Edwards P R, Martinet R 2004 J. Cryst. Growth 269 100

    [6]

    Davydov V Y, Klochikhin A A, Emtsev V V, Kurdyukov D, Ivanov S V, Vekshin V A, Bechstedt F, Furthmller J, Aderhold J, Graul J, Mudryi A V, Harima H, Akihiro H, Yamamoto A, Haller E E 2002 Phys. Status Solidi 234 787

    [7]

    Li Y, Huang Y R, Lai Y H 2009 IEEE J. Sel. Top. Quant. 15 1128

    [8]

    Fabien M, Doolittle W A 2014 Sol. Energ Mat. Sol. C. 130 354

    [9]

    Yamamoto A, Sugita K, Bhuiyan A G, Hashimoto A, Narita N 2013 Materials for Renewable and Sustainable Energy 2 1

    [10]

    Li Y, Chen H, Chen K J 2011 IEEE Electron Dev. Lett. 32 303

    [11]

    Lin Y S, Ma K J, Yang C C, Weirich T E 2003 J. Mater. Sci-Mater. El. 14 49

    [12]

    Li S X, Yu K M, WU J, Jones R E, Walukiewicz W, Agerlll J W, Shan W, Haller E E, Lu H, Schaff W J 2005 Phys. Rev. B. 71 161201R

    [13]

    Jang J S, Kim D, Seong T Y 2006 J. Appl. Phys. 99 073704

    [14]

    Lin Y J, Lin W X, Lee C T, Hang H C 2006 JPN J. Appl. Phys. 45 2505

    [15]

    Wang X F, Shao Z G, Chen D J, Lu H, Zhang R, Zhen Y D 2014 Chin. Phys. Lett. 31 057303

    [16]

    Vegard L 1921 Physics 5 17

    [17]

    Wuu D, Wu H, Chen S, Tsai T, Zheng X, Horng R 2009 J. Cryst. Growth. 311 3063

    [18]

    Oliver R A, Kappers M J, Humphreys C J, Briggs G A D 2005 J. Appl. Phys. 97 013707

    [19]

    Liu W, Soh C B, Chen P, Chua S J 2004 J. Cryst. Growth. 268 509

    [20]

    Soh C B, Liu W, Chua S J, Tripathy S, Chi D Z 2004 J. Cryst. Growth. 268 478

    [21]

    Lee C R, Noh S K, Leem J Y, Son S J, Lee I H 1997 J. Cryst. Growth. 182 11

    [22]

    Mira S, Collazo R, Dalmau R, Sitar Z 2007 Phys. Stat. Sol. 4 2260

    [23]

    Wu X H, Elsass C R, Abare A, Mack M, Keller S, Petroff P M, DenBaars S P, Speck J S, Rosner S J 1998 Appl. Phys. Lett. 72 692

    [24]

    Yu L S, XING Q J, Qiao D J, Lau S S, Redwing J, LIU Q Z 1998 J. Appl. Phys. 84 2099

    [25]

    Tsao C C, Wang Y, Weiner J, Bagnato V S 1996 J. Appl. Phys. 80 8

    [26]

    Morkoç H 1999 Nitride Semiconductor and Devices (Vol. 1) (New York: Springer-Verlag Berlin Heidelberg) pp196-203

    [27]

    Hashizume T, Kotani J, Hasegawa H 2004 Appl. Phys. Lett. 84 4884

  • [1]

    Green M A, Emer Y K, Hishikaw A Y, Warta W, Dunlop E D 2013 Prog. Photovolta 21 1

    [2]

    Piprek J, Römer F, Witzigmann B 2015 Appl. Phys. Lett. 106 101101

    [3]

    Aseev P, Rodriguez P, Gómez V J, Alvi N, Mánuel J M, Morales F M, Jiménez J J, García R, Senichev A, Lienau C, Calleja E, Nötzel R 2015 Appl. Phys. Lett. 106 072102

    [4]

    Tang F, Zhu T, Oehler F, Fu W Y, Griffiths J T, Massabuau F C P, Kappers M J, Martin T L, Bagot P A J, Moody M P, Oliver R A 2015 Appl. Phys. Lett. 106 072104

    [5]

    O'donnell K P, Fernandez-Torrente I, Edwards P R, Martinet R 2004 J. Cryst. Growth 269 100

    [6]

    Davydov V Y, Klochikhin A A, Emtsev V V, Kurdyukov D, Ivanov S V, Vekshin V A, Bechstedt F, Furthmller J, Aderhold J, Graul J, Mudryi A V, Harima H, Akihiro H, Yamamoto A, Haller E E 2002 Phys. Status Solidi 234 787

    [7]

    Li Y, Huang Y R, Lai Y H 2009 IEEE J. Sel. Top. Quant. 15 1128

    [8]

    Fabien M, Doolittle W A 2014 Sol. Energ Mat. Sol. C. 130 354

    [9]

    Yamamoto A, Sugita K, Bhuiyan A G, Hashimoto A, Narita N 2013 Materials for Renewable and Sustainable Energy 2 1

    [10]

    Li Y, Chen H, Chen K J 2011 IEEE Electron Dev. Lett. 32 303

    [11]

    Lin Y S, Ma K J, Yang C C, Weirich T E 2003 J. Mater. Sci-Mater. El. 14 49

    [12]

    Li S X, Yu K M, WU J, Jones R E, Walukiewicz W, Agerlll J W, Shan W, Haller E E, Lu H, Schaff W J 2005 Phys. Rev. B. 71 161201R

    [13]

    Jang J S, Kim D, Seong T Y 2006 J. Appl. Phys. 99 073704

    [14]

    Lin Y J, Lin W X, Lee C T, Hang H C 2006 JPN J. Appl. Phys. 45 2505

    [15]

    Wang X F, Shao Z G, Chen D J, Lu H, Zhang R, Zhen Y D 2014 Chin. Phys. Lett. 31 057303

    [16]

    Vegard L 1921 Physics 5 17

    [17]

    Wuu D, Wu H, Chen S, Tsai T, Zheng X, Horng R 2009 J. Cryst. Growth. 311 3063

    [18]

    Oliver R A, Kappers M J, Humphreys C J, Briggs G A D 2005 J. Appl. Phys. 97 013707

    [19]

    Liu W, Soh C B, Chen P, Chua S J 2004 J. Cryst. Growth. 268 509

    [20]

    Soh C B, Liu W, Chua S J, Tripathy S, Chi D Z 2004 J. Cryst. Growth. 268 478

    [21]

    Lee C R, Noh S K, Leem J Y, Son S J, Lee I H 1997 J. Cryst. Growth. 182 11

    [22]

    Mira S, Collazo R, Dalmau R, Sitar Z 2007 Phys. Stat. Sol. 4 2260

    [23]

    Wu X H, Elsass C R, Abare A, Mack M, Keller S, Petroff P M, DenBaars S P, Speck J S, Rosner S J 1998 Appl. Phys. Lett. 72 692

    [24]

    Yu L S, XING Q J, Qiao D J, Lau S S, Redwing J, LIU Q Z 1998 J. Appl. Phys. 84 2099

    [25]

    Tsao C C, Wang Y, Weiner J, Bagnato V S 1996 J. Appl. Phys. 80 8

    [26]

    Morkoç H 1999 Nitride Semiconductor and Devices (Vol. 1) (New York: Springer-Verlag Berlin Heidelberg) pp196-203

    [27]

    Hashizume T, Kotani J, Hasegawa H 2004 Appl. Phys. Lett. 84 4884

  • [1] 李涵汐, 王德真. 热电子发射对钨偏滤器靶板附近磁化鞘层影响的模拟研究. 物理学报, 2023, 72(15): 159401. doi: 10.7498/aps.72.20230276
    [2] 郝国强, 张瑞, 张文静, 陈娜, 叶晓军, 李红波. 非对称氧掺杂对石墨烯/二硒化钼异质结肖特基势垒的调控. 物理学报, 2022, 71(1): 017104. doi: 10.7498/aps.71.20210238
    [3] 邓旭良, 冀先飞, 王德君, 黄玲琴. 石墨烯过渡层对金属/SiC接触肖特基势垒调控的第一性原理研究. 物理学报, 2022, 71(5): 058102. doi: 10.7498/aps.71.20211796
    [4] 丁华俊, 薛忠营, 魏星, 张波. 1 nm Al 插入层调节 NiGe/n-Ge 肖特基势垒. 物理学报, 2022, 71(20): 207302. doi: 10.7498/aps.71.20220320
    [5] 张红艳, 包黎红, 潮洛蒙, 赵凤岐, 刘子忠. 多功能多元稀土六硼化物La1–x Srx B6光吸收及热电子发射机理. 物理学报, 2021, 70(21): 214204. doi: 10.7498/aps.70.20211069
    [6] 张冠杰, 杨豪, 张楠. 利用X射线衍射技术对压电材料本征与非本征起源探究的研究进展. 物理学报, 2020, 69(12): 127711. doi: 10.7498/aps.69.20200301
    [7] 张芳, 贾利群, 孙现亭, 戴宪起, 黄奇祥, 李伟. 电场对graphene/InSe范德瓦耳斯异质结肖特基势垒的调控. 物理学报, 2020, 69(15): 157302. doi: 10.7498/aps.69.20191987
    [8] 黄浩, 张侃, 吴明, 李虎, 王敏涓, 张书铭, 陈建宏, 文懋. SiC纤维增强Ti17合金复合材料轴向残余应力的拉曼光谱和X射线衍射法对比研究. 物理学报, 2018, 67(19): 197203. doi: 10.7498/aps.67.20181157
    [9] 吴孔平, 孙昌旭, 马文飞, 王杰, 魏巍, 蔡俊, 陈昌兆, 任斌, 桑立雯, 廖梅勇. 铝-金刚石界面电子特性与界面肖特基势垒的杂化密度泛函理论HSE06的研究. 物理学报, 2017, 66(8): 088102. doi: 10.7498/aps.66.088102
    [10] 石大为, 吴美玲, 杨昌平, 任春林, 肖海波, 王开鹰. Pr0.7Ca0.3MnO3陶瓷晶界势垒的交流特性. 物理学报, 2013, 62(2): 026201. doi: 10.7498/aps.62.026201
    [11] 赵守仁, 黄志鹏, 孙雷, 孙朋超, 张传军, 邬云华, 曹鸿, 王善力, 褚君浩. 肖特基势垒对CdS/CdTe薄膜电池J-V暗性能的影响. 物理学报, 2013, 62(16): 168801. doi: 10.7498/aps.62.168801
    [12] 彭凯, 刘大刚. 三维热场致发射模型的数值模拟与研究. 物理学报, 2012, 61(12): 121301. doi: 10.7498/aps.61.121301
    [13] 徐晓明, 苗伟, 陶琨. X射线衍射多相谱中某一物相点阵参数的直接求解方法. 物理学报, 2011, 60(8): 086101. doi: 10.7498/aps.60.086101
    [14] 修明霞, 任俊峰, 王玉梅, 原晓波, 胡贵超. 肖特基势垒对铁磁/有机半导体结构自旋注入性质的影响. 物理学报, 2010, 59(12): 8856-8861. doi: 10.7498/aps.59.8856
    [15] 李永华, 刘常升, 孟繁玲, 王煜明, 郑伟涛. NiTi合金薄膜厚度对相变温度影响的X射线光电子能谱分析. 物理学报, 2009, 58(4): 2742-2745. doi: 10.7498/aps.58.2742
    [16] 李洪涛, 罗 毅, 席光义, 汪 莱, 江 洋, 赵 维, 韩彦军, 郝智彪, 孙长征. 基于X射线衍射的GaN薄膜厚度的精确测量. 物理学报, 2008, 57(11): 7119-7125. doi: 10.7498/aps.57.7119
    [17] 明保全, 王矜奉, 臧国忠, 王春明, 盖志刚, 杜 鹃, 郑立梅. 铌酸钾钠基无铅压电陶瓷的X射线衍射与相变分析. 物理学报, 2008, 57(9): 5962-5967. doi: 10.7498/aps.57.5962
    [18] 谈国太, 陈正豪. La1-xTexMnO3晶格结构的X射线粉末衍射分析. 物理学报, 2007, 56(3): 1702-1706. doi: 10.7498/aps.56.1702
    [19] 钦 佩, 娄豫皖, 杨传铮, 夏保佳. 分离X射线衍射线多重宽化效应的新方法和计算程序. 物理学报, 2006, 55(3): 1325-1335. doi: 10.7498/aps.55.1325
    [20] 李宏伟, 王太宏. InAs量子点在肖特基势垒二极管输运特性中的影响. 物理学报, 2001, 50(12): 2501-2505. doi: 10.7498/aps.50.2501
计量
  • 文章访问数:  4785
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-19
  • 修回日期:  2018-09-02
  • 刊出日期:  2018-11-05

/

返回文章
返回