搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Xe-NH (X3∑-)体系的势能面和冷碰撞动力学研究

乔政 王雅丽 吴明伟 凤尔银 黄武英

引用本文:
Citation:

Xe-NH (X3∑-)体系的势能面和冷碰撞动力学研究

乔政, 王雅丽, 吴明伟, 凤尔银, 黄武英

Potential energy surface and cold collision dynamics of Xe-NH(X3∑-) system

Qiao Zheng1\2, Wang Ya-Li, Wu Ming-Wei, Feng Er-Yin, Huang Wu-Ying
PDF
导出引用
  • 以超冷Xe原子感应冷却NH(X3∑-)分子实验为背景,理论研究磁场中Xe和NH的冷碰撞动力学性质.通过从头算方法得到了解析表达的Xe-NH体系势能面,并在此基础上采用量子动力学计算方法,研究了磁场条件下NH低场追索态(n=0,mj=1)的冷碰撞塞曼弛豫截面.结果表明超冷Xe原子感应冷却NH分子可能在实验上难以实施.
    Sympathetic cooling is one of the most promising techniques for producing ultracold molecules from precooled molecules. Previous researches have shown that it is inadequate to use the ultracold alkali-metal atoms as coolant for sympathetic cooling. To explore the possibility of ultracold alkali-earth-metal atoms as coolant, in this paper a theoretical investigation is performed of the cold collision dynamics for Xe-NH(X3∑-) system in magnetic fields. The interaction potential energies of Xe-NH complex are calculated respectively by using the single and double excitation coupled-cluster theory with the noniterative treatment of triple excitations[CCSD(T)] method and complete basis set limit extrapolated method. An analytic express of potential energy surface (PES) is given for the first time. A single global minimum value occurs at R=7.14a0, θ=102.76° with an energy of-153.54 cm-1, and the PES has a weak anisotropy. Combine the ab initio PES with quantum scattering theory, then the cold collisional dynamics of Xe-NH system in a magnetic field will be studied. The elastic and inelastic transition cross sections and their ratios of NH molecules in the lowest low-field following state (n=0, mj=1) under different magnetic fields and collisional energies are calculated. The results show that the elastic cross section is independent of magnetic field, and the inelastic cross section changes with magnetic field, especially at an ultracold temperature. A common rule of thumb is that to successfully implement cooling, the ratio of elastic cross section to inelastic cross section needs to reach 100 at least. The results suggest that it is likely to be a challenging work to perform sympathetic cooling of NH molecule by ultracold Xe atom.
      通信作者: 凤尔银, fengbf@mail.ahnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:10874001,11374014)资助的课题.
      Corresponding author: Feng Er-Yin, fengbf@mail.ahnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 10874001, 11374014).
    [1]

    Zwierlein M W, Stan C A, Schunck C H, Raupach S M F, Gupta S, Hadzibabic Z, Ketterle W 2003 Phys. Rev. Lett. 91 250401

    [2]

    Sage J M, Sainis S, Bergeman T, Demille D 2005 Phys. Rev. Lett. 94 203001

    [3]

    Ni K K, Ospelkaus S, de Miranda M H G, Péer A, Neyenhuis B, Zirbel J J, Kotochigova S, Julienne P S, Jin D S, Ye J 2008 Science 322 231

    [4]

    Ospelkaus S, Ni K K, Wang D, de Miranda M H G, Neyenhuis B, Qúeméner G, Julienne P S, Bohn J L, Jin D S, Ye J 2010 Science 327 853

    [5]

    Park J W, Will S A, Zwierlein M W 2015 Phys. Rev. Lett. 114 205302

    [6]

    Weinstein J D, de Carvalho R, Guillet T, Friedrich B, Doyle J M 1998 Nature 395 148

    [7]

    Bethlem H L, Meijer G 2003 Int. Rev. Phys. Chem. 22 73

    [8]

    Fu M K, Ma H T, Cao J W, Bian W S 2016 J. Chem. Phys. 144 184302

    [9]

    Xia W S, Fu M K, Ma H T, Bian W S 2017 Chem. Phys. 485 29

    [10]

    Krems R V, Stwalley W C, Friedrich B 2009 Cold Molecules: Theory, Experiment, Applications (London: Taylor & Francis) p651

    [11]

    Modugno G, Ferrari G, Roati G, Brecha R J, Simoni A, Inguscio M 2001 Science 294 1320

    [12]

    SoldánP, Hutson J M 2004 Phys. Rev. Lett. 92 163202

    [13]

    Hummon M T, Yeo M, Stuhl B K, Collopy A L, Xia Y, Ye J 2013 Phys. Rev. Lett. 110 143001

    [14]

    de Carvalho R, Doyle J M, Friedrich B, Guillet T, Kim J, Patterson D, Weinstein J D 1999 Eur. Phys. J. D 7 289

    [15]

    Żuchowski P S, Hutson J M 2008 Phys. Rev. A 78 022701

    [16]

    Barker P F, Purcell S M, Douglas P, Barletta P, Coppendale N, Maher-McWilliams C, Tennyson J 2009 Faraday Discuss. 142 175

    [17]

    Barletta P, Tennyson J, Barker P F 2009 New J. Phys. 11 055029

    [18]

    González-Martínez M L, Huston J M 2013 Phys. Rev. Lett. 111 203004

    [19]

    Bytautas L, Ruedenberg K 2008 J. Chem. Phys. 128 214308

    [20]

    Bukowski R, Sadlej J, Jeziorski B, Jankowski P, Szalewicz K, Kucharski S A, Williams H L, Rice B M 1999 J. Chem. Phys. 110 3785

    [21]

    Guillon G, Stoecklin T, Voronin A 2008 Phys. Rev. A. 77 042718

    [22]

    Manolopoulos D E 1986 J. Chem. Phys. 85 6425

    [23]

    Volpi A, Bohn J L 2002 Phys. Rev. A 65 052712

    [24]

    Wallis A O G, Huston J M 2009 Phys. Rev. Lett. 103 183201

    [25]

    Tiesinga E, Verhaar B J, Stoof H T C 1993 Phys. Rev. A 47 4114

  • [1]

    Zwierlein M W, Stan C A, Schunck C H, Raupach S M F, Gupta S, Hadzibabic Z, Ketterle W 2003 Phys. Rev. Lett. 91 250401

    [2]

    Sage J M, Sainis S, Bergeman T, Demille D 2005 Phys. Rev. Lett. 94 203001

    [3]

    Ni K K, Ospelkaus S, de Miranda M H G, Péer A, Neyenhuis B, Zirbel J J, Kotochigova S, Julienne P S, Jin D S, Ye J 2008 Science 322 231

    [4]

    Ospelkaus S, Ni K K, Wang D, de Miranda M H G, Neyenhuis B, Qúeméner G, Julienne P S, Bohn J L, Jin D S, Ye J 2010 Science 327 853

    [5]

    Park J W, Will S A, Zwierlein M W 2015 Phys. Rev. Lett. 114 205302

    [6]

    Weinstein J D, de Carvalho R, Guillet T, Friedrich B, Doyle J M 1998 Nature 395 148

    [7]

    Bethlem H L, Meijer G 2003 Int. Rev. Phys. Chem. 22 73

    [8]

    Fu M K, Ma H T, Cao J W, Bian W S 2016 J. Chem. Phys. 144 184302

    [9]

    Xia W S, Fu M K, Ma H T, Bian W S 2017 Chem. Phys. 485 29

    [10]

    Krems R V, Stwalley W C, Friedrich B 2009 Cold Molecules: Theory, Experiment, Applications (London: Taylor & Francis) p651

    [11]

    Modugno G, Ferrari G, Roati G, Brecha R J, Simoni A, Inguscio M 2001 Science 294 1320

    [12]

    SoldánP, Hutson J M 2004 Phys. Rev. Lett. 92 163202

    [13]

    Hummon M T, Yeo M, Stuhl B K, Collopy A L, Xia Y, Ye J 2013 Phys. Rev. Lett. 110 143001

    [14]

    de Carvalho R, Doyle J M, Friedrich B, Guillet T, Kim J, Patterson D, Weinstein J D 1999 Eur. Phys. J. D 7 289

    [15]

    Żuchowski P S, Hutson J M 2008 Phys. Rev. A 78 022701

    [16]

    Barker P F, Purcell S M, Douglas P, Barletta P, Coppendale N, Maher-McWilliams C, Tennyson J 2009 Faraday Discuss. 142 175

    [17]

    Barletta P, Tennyson J, Barker P F 2009 New J. Phys. 11 055029

    [18]

    González-Martínez M L, Huston J M 2013 Phys. Rev. Lett. 111 203004

    [19]

    Bytautas L, Ruedenberg K 2008 J. Chem. Phys. 128 214308

    [20]

    Bukowski R, Sadlej J, Jeziorski B, Jankowski P, Szalewicz K, Kucharski S A, Williams H L, Rice B M 1999 J. Chem. Phys. 110 3785

    [21]

    Guillon G, Stoecklin T, Voronin A 2008 Phys. Rev. A. 77 042718

    [22]

    Manolopoulos D E 1986 J. Chem. Phys. 85 6425

    [23]

    Volpi A, Bohn J L 2002 Phys. Rev. A 65 052712

    [24]

    Wallis A O G, Huston J M 2009 Phys. Rev. Lett. 103 183201

    [25]

    Tiesinga E, Verhaar B J, Stoof H T C 1993 Phys. Rev. A 47 4114

计量
  • 文章访问数:  1341
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-09
  • 修回日期:  2018-09-03
  • 刊出日期:  2018-11-05

Xe-NH (X3∑-)体系的势能面和冷碰撞动力学研究

  • 1. 安徽师范大学物理与电子信息学院, 芜湖 241000;
  • 2. 皖南医学院公共基础学院, 芜湖 241002
  • 通信作者: 凤尔银, fengbf@mail.ahnu.edu.cn
    基金项目: 

    国家自然科学基金(批准号:10874001,11374014)资助的课题.

摘要: 以超冷Xe原子感应冷却NH(X3∑-)分子实验为背景,理论研究磁场中Xe和NH的冷碰撞动力学性质.通过从头算方法得到了解析表达的Xe-NH体系势能面,并在此基础上采用量子动力学计算方法,研究了磁场条件下NH低场追索态(n=0,mj=1)的冷碰撞塞曼弛豫截面.结果表明超冷Xe原子感应冷却NH分子可能在实验上难以实施.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回