搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外场作用下C12H4Cl4O2的分子结构和电子光谱研究

杜建宾 冯志芳 韩丽君 唐延林 武德起

引用本文:
Citation:

外场作用下C12H4Cl4O2的分子结构和电子光谱研究

杜建宾, 冯志芳, 韩丽君, 唐延林, 武德起

Molecular structure and electronic spectrum of C12H4Cl4O2 under external electric field

Du Jian-Bin, Feng Zhi-Fang, Han Li-Jun, Tang Yan-Lin, Wu De-Qi
PDF
导出引用
  • 各种环境毒物危害着人类的生产生活,二噁英更是严重危害人类的健康.C12H4Cl4O2(2,3,7,8-tetrachlorodibenzo-p-dioxin,TCDD)是二噁英中毒性最强的化合物,也是目前已知毒性最强的污染物.为研究TCDD外场效应,采用密度泛函理论方法优化了不同静电场0–0.025 a.u.(0–1.2856×1010 V/m)作用下TCDD分子的基态几何结构,得到了分子总能量;在此基础上,采用含时密度泛函理论方法对TCDD分子的紫外-可见(UV-Vis)吸收光谱在不同外电场下的变化进行了研究.结果表明:分子几何构型与电场大小呈现强烈的依赖关系,分子总能量随着外电场的增强而减小;伴随着外电场的增强,分子激发态的摩尔吸收系数逐渐减小,UV-Vis吸收峰显著红移.
    Various environmental poisons have caused damage to human production and life, and dioxin has seriously harmed human health. The C12H4Cl4O2(2, 3, 7, 8-tetrachlorodibenzo-p-dioxin, TCDD) is currently the most toxic compound. In order to study the influence of external electrical field on molecular structure and spectrum, herein the density functional theory (DFT) at a B3LYP/6-31+g (d,p) level is employed to calculate the geometrical parameters of the ground state of TCDD molecule under external electric fields ranging from 0 to 0.025 a.u. (0-1.2856×1010 V/m). Based on the optimized structure, time-dependent DFT at the same level as the above is adopted to calculate the absorption wavelengths and the molar absorption coefficients for the first twenty-six excited states of TCDD molecule under external electric fields. The results show that the most absorption band located at 221 nm with a molar absorption coefficient of 54064 L·mol-1·cm-1 in the UV-Vis absorption spectrum appears in the E belt, which originates from the benzene electronic transition from π to π*. In addition, a shoulder peak at 296 nm appears in the B belt, which is the characteristic absorption of aromatic compounds' electron transition from π to π*. Compared with the data in the literature, the wavelength of the shoulder is blue-shifted only 9 nm. The molecular geometry parameters are strongly dependent on the external field intensity, and the total energy decreases with external field intensity increasing. With the enhancement of external electric field, the electrons in the molecule have an overall transfer, which makes the big bond of benzene ring weakened, the energy of the transition decreases, and the wavelength of the transition increases, that is, the absorption peak is red-shifted. When the external electric field increases to 0.02 a.u., the electron cloud migration phenomenon of occupied and transition orbits of TCDD molecule are obvious, and the absorption peak red shift phenomenon is also very significant. With the enhancement of external electric field, the overall transfer of electrons in the molecule also reduces the density of the benzene rings and the surrounding electron cloud, reduces the number of electrons in the transition from π to π*, and also reduces the molar absorption coefficient. When the external electric field is enhanced to 0.02 a.u., the molar absorption coefficient decreases significantly. This work provides a theoretical basis for studying the TCDD detection and degradation method, and also has implications for other environmental pollutants detection methods and degradation mechanisms.
      通信作者: 杜建宾, dujianbinfzf@sina.com
    • 基金项目: 河北省教育厅青年基金项目(批准号:QN2015219)和廊坊师范学院自然基金(批准号:LSZQ201105)资助的课题.
      Corresponding author: Du Jian-Bin, dujianbinfzf@sina.com
    • Funds: Project supported by the College and Universities in Hebei Province Science and Technology Research, China (Grant No. QN2015219) and the Natural Science Foundation of Langfang Normal University, China (Grant No. LSZQ201105).
    [1]

    Dong S J, Liu G R, Zhu Q Q, Zhang X, Zheng M H 2016 Chin. Sci. Bull. 61 1336 (in Chinese) [董姝君, 刘国瑞, 朱青青, 张宪, 郑明辉 2016 科学通报 61 1336]

    [2]

    Qian L X, Long H M, Wu X J, Chun T J, Wang Y P 2016 Environ. Pollut. Control 38 34 (in Chinese) [钱立新, 龙红明, 吴雪健, 春铁军, 王毅璠 2016 环境污染与防治 38 34]

    [3]

    Fernández-González R, Yebra-Pimentel I, Martinez-Carballo E, Simal-Gándara J 2015 Crit. Rev. Food Sci. 55 1590

    [4]

    Yang X, Yu G, Wang L S 2002 Chin. Sci. Bull. 47 269 (in Chinese) [杨曦, 余刚, 王连生 2002 科学通报 47 269]

    [5]

    Miyazaki W, Fujiwara Y, Katoh T 2016 Neuro. Toxicol. 52 64

    [6]

    Fracchiolla N S, Annaloro C, Guidotti F, Fattizzo B, Cortelezzi A 2016 Toxicology 374 60

    [7]

    Du G Y, Wang Q, Zhang S L, Zhang S K, Deng C P, Zhang H M, Zhu M X, Jiang X, Zhu C W, Ren Y L 2017 Environ. Sci. 38 2280 (in Chinese) [杜国勇, 汪倩, 张姝琳, 张素坤, 邓春萍, 张洪铭, 朱盟翔, 蒋昕, 朱成旺, 任燕玲 2017 环境科学 38 2280]

    [8]

    Zhang H P, Hou J L, Wang Y B, Tang P P, Zhang Y P, Lin X Y, Liu C S, Tang Y H 2017 Chemosphere 185 509

    [9]

    Wang R X, Zhang D J, Liu C B 2017 Chemosphere 168 18

    [10]

    Wang F H, Huang D H, Yang J S 2013 Acta Phys. Sin. 62 073102 (in Chinese) [王藩侯, 黄多辉, 杨俊升 2013 物理学报 62 073102]

    [11]

    Ellert C, Corkum P B 1999 Phys. Rev. A 59 R3170

    [12]

    Walsh T D G, Starch L, Chin S L 1998 J. Phys. B: At. Mol. Opt. Phys. 31 4853

    [13]

    Wu H J, Wu M, Xie M S, Liu H, Yang M, Sun F X, Du H Z 2000 Chin. J. Catal. 21 399 (in Chinese) [吴合进, 吴鸣, 谢茂松, 刘鸿, 杨民, 孙福侠, 杜鸿章 2000 催化学报 21 399]

    [14]

    Rai D, Joshi H, Kulkarni A D, Gejji S P, Pathak R K 2007 J. Phys. Chem. A 111 9111

    [15]

    Ledingham K W D, Singhal R P, Smith D J, McCanny T, Graham P, Kilic H S, Peng W X, Wang S L, Langley A J, Taday P F, Kosmidis C 1998 J. Phys. Chem. A 102 3002

    [16]

    Ellert C, Stapelfeldt H, Constant E 1998 Phil. Trans. R. Sol. Lond. A 356 329

    [17]

    Iwamae A, Hishikawa A, Yamanouchi K 2000 J. Phys. B: At. Mol. Opt. Phys. 33 223

    [18]

    Wu Y G, Li S X, Hao J X, Xu M, Sun G Y, Ling Hu R F 2015 Acta Phys. Sin. 64 153102 (in Chinese) [吴永刚, 李世雄, 郝进欣, 徐梅, 孙光宇, 令狐荣锋 2015 物理学报 64 153102]

    [19]

    Xie A D, Xie J, Zhou L L, Wu D L, Ruan W, Luo W L 2016 Chin. J. Atom. Mol. Phys. 33 989 (in Chinese) [谢安东, 谢晶, 周玲玲, 伍冬兰, 阮文, 罗文浪 2016 原子与分子物理学报 33 989]

    [20]

    Khana M S, Pala S, Krupadamb R J 2015 J. Mol. Recognit. 28 427

    [21]

    Gasiorskia P, Matusiewicza M, Gondekb E, Uchaczc T, Wojtasikd K, Daneld A, Shchure Y, Kityka A V 2017 Spectrochim. Acta A 186 89

    [22]

    Liu X G, Cole M J, Xu Z C 2017 J. Phys. Chem. C 121 13274

    [23]

    Großema F C, Telesca R, Joukman H T, Snijders J G 2001 J. Chem. Phys. 115 10014

    [24]

    Xu G L, Xie H X, Yuan W, Zhang X Z, Liu Y F 2012 Chin. Phys. B 21 053101

    [25]

    Wu D L, Tan B, Wan H J, Zang X Q, Xie A D 2013 Chin. Phys. B 22 123101

    [26]

    Kjellberg P, He Z, Pullerits T 2003 J. Phys. Chem. B 107 13737

    [27]

    Zhu Z H, Fu Y B, Gao T, Chen Y L, Chen X J 2003 Chin. J. Atom. Mol. Phys. 20 169 (in Chinese) [朱正和, 付依备, 高涛, 陈银亮, 陈晓军 2003 原子与分子物理学报 20 169]

    [28]

    Chen X J, Luo S Z, Jiang S B, Huang W, Gao X L, Ma M Z, Zhu Z H 2004 Chin. J. Atom. Mol. Phys. 21 203 (in Chinese) [陈晓军, 罗顺忠, 蒋树斌, 黄玮, 高小玲, 马美仲, 朱正和 2004 原子与分子物理学报 21 203]

    [29]

    Koshioka M, Ishizaka M, Yamada T, Kanazawa J, Murai T 1990 J. Pesticide Sci. 15 39

  • [1]

    Dong S J, Liu G R, Zhu Q Q, Zhang X, Zheng M H 2016 Chin. Sci. Bull. 61 1336 (in Chinese) [董姝君, 刘国瑞, 朱青青, 张宪, 郑明辉 2016 科学通报 61 1336]

    [2]

    Qian L X, Long H M, Wu X J, Chun T J, Wang Y P 2016 Environ. Pollut. Control 38 34 (in Chinese) [钱立新, 龙红明, 吴雪健, 春铁军, 王毅璠 2016 环境污染与防治 38 34]

    [3]

    Fernández-González R, Yebra-Pimentel I, Martinez-Carballo E, Simal-Gándara J 2015 Crit. Rev. Food Sci. 55 1590

    [4]

    Yang X, Yu G, Wang L S 2002 Chin. Sci. Bull. 47 269 (in Chinese) [杨曦, 余刚, 王连生 2002 科学通报 47 269]

    [5]

    Miyazaki W, Fujiwara Y, Katoh T 2016 Neuro. Toxicol. 52 64

    [6]

    Fracchiolla N S, Annaloro C, Guidotti F, Fattizzo B, Cortelezzi A 2016 Toxicology 374 60

    [7]

    Du G Y, Wang Q, Zhang S L, Zhang S K, Deng C P, Zhang H M, Zhu M X, Jiang X, Zhu C W, Ren Y L 2017 Environ. Sci. 38 2280 (in Chinese) [杜国勇, 汪倩, 张姝琳, 张素坤, 邓春萍, 张洪铭, 朱盟翔, 蒋昕, 朱成旺, 任燕玲 2017 环境科学 38 2280]

    [8]

    Zhang H P, Hou J L, Wang Y B, Tang P P, Zhang Y P, Lin X Y, Liu C S, Tang Y H 2017 Chemosphere 185 509

    [9]

    Wang R X, Zhang D J, Liu C B 2017 Chemosphere 168 18

    [10]

    Wang F H, Huang D H, Yang J S 2013 Acta Phys. Sin. 62 073102 (in Chinese) [王藩侯, 黄多辉, 杨俊升 2013 物理学报 62 073102]

    [11]

    Ellert C, Corkum P B 1999 Phys. Rev. A 59 R3170

    [12]

    Walsh T D G, Starch L, Chin S L 1998 J. Phys. B: At. Mol. Opt. Phys. 31 4853

    [13]

    Wu H J, Wu M, Xie M S, Liu H, Yang M, Sun F X, Du H Z 2000 Chin. J. Catal. 21 399 (in Chinese) [吴合进, 吴鸣, 谢茂松, 刘鸿, 杨民, 孙福侠, 杜鸿章 2000 催化学报 21 399]

    [14]

    Rai D, Joshi H, Kulkarni A D, Gejji S P, Pathak R K 2007 J. Phys. Chem. A 111 9111

    [15]

    Ledingham K W D, Singhal R P, Smith D J, McCanny T, Graham P, Kilic H S, Peng W X, Wang S L, Langley A J, Taday P F, Kosmidis C 1998 J. Phys. Chem. A 102 3002

    [16]

    Ellert C, Stapelfeldt H, Constant E 1998 Phil. Trans. R. Sol. Lond. A 356 329

    [17]

    Iwamae A, Hishikawa A, Yamanouchi K 2000 J. Phys. B: At. Mol. Opt. Phys. 33 223

    [18]

    Wu Y G, Li S X, Hao J X, Xu M, Sun G Y, Ling Hu R F 2015 Acta Phys. Sin. 64 153102 (in Chinese) [吴永刚, 李世雄, 郝进欣, 徐梅, 孙光宇, 令狐荣锋 2015 物理学报 64 153102]

    [19]

    Xie A D, Xie J, Zhou L L, Wu D L, Ruan W, Luo W L 2016 Chin. J. Atom. Mol. Phys. 33 989 (in Chinese) [谢安东, 谢晶, 周玲玲, 伍冬兰, 阮文, 罗文浪 2016 原子与分子物理学报 33 989]

    [20]

    Khana M S, Pala S, Krupadamb R J 2015 J. Mol. Recognit. 28 427

    [21]

    Gasiorskia P, Matusiewicza M, Gondekb E, Uchaczc T, Wojtasikd K, Daneld A, Shchure Y, Kityka A V 2017 Spectrochim. Acta A 186 89

    [22]

    Liu X G, Cole M J, Xu Z C 2017 J. Phys. Chem. C 121 13274

    [23]

    Großema F C, Telesca R, Joukman H T, Snijders J G 2001 J. Chem. Phys. 115 10014

    [24]

    Xu G L, Xie H X, Yuan W, Zhang X Z, Liu Y F 2012 Chin. Phys. B 21 053101

    [25]

    Wu D L, Tan B, Wan H J, Zang X Q, Xie A D 2013 Chin. Phys. B 22 123101

    [26]

    Kjellberg P, He Z, Pullerits T 2003 J. Phys. Chem. B 107 13737

    [27]

    Zhu Z H, Fu Y B, Gao T, Chen Y L, Chen X J 2003 Chin. J. Atom. Mol. Phys. 20 169 (in Chinese) [朱正和, 付依备, 高涛, 陈银亮, 陈晓军 2003 原子与分子物理学报 20 169]

    [28]

    Chen X J, Luo S Z, Jiang S B, Huang W, Gao X L, Ma M Z, Zhu Z H 2004 Chin. J. Atom. Mol. Phys. 21 203 (in Chinese) [陈晓军, 罗顺忠, 蒋树斌, 黄玮, 高小玲, 马美仲, 朱正和 2004 原子与分子物理学报 21 203]

    [29]

    Koshioka M, Ishizaka M, Yamada T, Kanazawa J, Murai T 1990 J. Pesticide Sci. 15 39

  • [1] 刘晨曦, 庞国旺, 潘多桥, 史蕾倩, 张丽丽, 雷博程, 赵旭才, 黄以能. 电场对GaN/g-C3N4异质结电子结构和光学性质影响的第一性原理研究. 物理学报, 2022, 71(9): 097301. doi: 10.7498/aps.71.20212261
    [2] 崔洋, 李静, 张林. 外加横向电场作用下石墨烯纳米带电子结构的密度泛函紧束缚计算. 物理学报, 2021, 70(5): 053101. doi: 10.7498/aps.70.20201619
    [3] 李世雄, 陈德良, 张正平, 隆正文, 秦水介. 环形C18在外电场下的基态性质和激发特性. 物理学报, 2020, 69(10): 103101. doi: 10.7498/aps.69.20200268
    [4] 李亚莎, 孙林翔, 周筱, 陈凯, 汪辉耀. 基于密度泛函理论的外电场下C5F10O的结构及其激发特性. 物理学报, 2020, 69(1): 013101. doi: 10.7498/aps.69.20191455
    [5] 杜建宾, 冯志芳, 张倩, 韩丽君, 唐延林, 李奇峰. 外电场作用下MoS2的分子结构和电子光谱. 物理学报, 2019, 68(17): 173101. doi: 10.7498/aps.68.20190781
    [6] 冯秋菊, 李芳, 李彤彤, 李昀铮, 石博, 李梦轲, 梁红伟. 外电场辅助化学气相沉积方法制备网格状β-Ga2O3纳米线及其特性研究. 物理学报, 2018, 67(21): 218101. doi: 10.7498/aps.67.20180805
    [7] 李亚莎, 谢云龙, 黄太焕, 徐程, 刘国成. 基于密度泛函理论的外电场下盐交联聚乙烯分子的结构及其特性. 物理学报, 2018, 67(18): 183101. doi: 10.7498/aps.67.20180808
    [8] 杜建宾, 张倩, 李奇峰, 唐延林. 基于密度泛函理论的C24H38O4分子外场效应研究. 物理学报, 2018, 67(6): 063102. doi: 10.7498/aps.67.20172022
    [9] 李世雄, 张正平, 隆正文, 秦水介. 硼球烯B40在外电场下的基态性质和光谱特性. 物理学报, 2017, 66(10): 103102. doi: 10.7498/aps.66.103102
    [10] 吴永刚, 李世雄, 郝进欣, 徐梅, 孙光宇, 令狐荣锋. 外电场下CdSe的基态性质和光谱特性研究. 物理学报, 2015, 64(15): 153102. doi: 10.7498/aps.64.153102
    [11] 徐国亮, 张琳, 路战胜, 刘培, 刘玉芳. 特殊构型Si2N2分子团簇电致激发特性的密度泛函理论研究. 物理学报, 2014, 63(10): 103101. doi: 10.7498/aps.63.103101
    [12] 曹欣伟, 任杨, 刘慧, 李姝丽. 强外电场作用下BN分子的结构与激发特性. 物理学报, 2014, 63(4): 043101. doi: 10.7498/aps.63.043101
    [13] 李涛, 唐延林, 凌智钢, 李玉鹏, 隆正文. 外电场对对硝基氯苯分子结构与电子光谱影响的研究. 物理学报, 2013, 62(10): 103103. doi: 10.7498/aps.62.103103
    [14] 杜建宾, 唐延林, 隆正文. 外电场作用下的五氯酚分子结构和电子光谱的研究. 物理学报, 2012, 61(15): 153101. doi: 10.7498/aps.61.153101
    [15] 何建勇, 隆正文, 龙超云, 蔡绍洪. 电场作用下CaS的分子结构和电子光谱. 物理学报, 2010, 59(3): 1651-1657. doi: 10.7498/aps.59.1651
    [16] 姜明, 苟富均, 闫安英, 张传武, 苗峰. BeO分子在不同方向外电场中的能量和光谱. 物理学报, 2010, 59(11): 7743-7748. doi: 10.7498/aps.59.7743
    [17] 徐国亮, 刘雪峰, 夏要争, 张现周, 刘玉芳. 外电场作用下Si2O分子的激发特性. 物理学报, 2010, 59(11): 7756-7761. doi: 10.7498/aps.59.7756
    [18] 周晶晶, 陈云贵, 吴朝玲, 肖艳, 高涛. NaAlH4 表面Ti催化空间构型和X射线吸收光谱: Car-Parrinello分子动力学和密度泛函理论研究. 物理学报, 2010, 59(10): 7452-7457. doi: 10.7498/aps.59.7452
    [19] 陈玉红, 张材荣, 马 军. MgmBn(m=1,2;n=1—4)团簇结构与性质的密度泛函理论研究. 物理学报, 2006, 55(1): 171-178. doi: 10.7498/aps.55.171
    [20] 曾振华, 邓辉球, 李微雪, 胡望宇. O在Au(111)表面吸附的密度泛函理论研究. 物理学报, 2006, 55(6): 3157-3164. doi: 10.7498/aps.55.3157
计量
  • 文章访问数:  7031
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-30
  • 修回日期:  2018-09-12
  • 刊出日期:  2019-11-20

/

返回文章
返回