搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁基高温超导体电子结构的角分辨光电子能谱研究

赵林 刘国东 周兴江

引用本文:
Citation:

铁基高温超导体电子结构的角分辨光电子能谱研究

赵林, 刘国东, 周兴江

Angle-resolved photoemission studies on iron based high temperature superconductors

Zhao Lin, Liu Guo-Dong, Zhou Xing-Jiang
PDF
导出引用
  • 铜氧化物超导体和铁基超导体是人类相继发现的两类高温超导家族,它们的高温超导机理是凝聚态物理领域中长期争论但悬而未决的重大问题.对铁基超导体广泛而深入的研究,以及与铜氧化物高温超导体的对比,对于发展新的量子固体理论、解决高温超导机理、探索新的超导体以及超导实际应用都具有重要意义.固体材料的宏观物性由其微观电子结构所决定,揭示高温超导材料的微观电子结构是理解高温超导电性的前提和基础.由于角分辨光电子能谱技术具有独特的同时对能量、动量甚至自旋的分辨能力,已成为探测材料微观电子结构的最直接、最有力的实验手段,在高温超导体的研究中发挥了重要作用.本文综述了在不同体系铁基超导体中费米面拓扑结构、超导能隙大小和对称性、轨道三维性和选择性、电子耦合模式等的揭示和发现,为甄别和提出铁基超导新理论、解决高温超导机理问题提供重要依据.
    Copper oxide superconductors and iron-based superconductors are two important families of high temperature superconductors. Their high-temperature superconductivity mechanism is a long-standing issue and still in hot debate in the field of condensed matter physics. The extensive and in-depth exploration of iron-based superconductors and their comparative study with copper oxide high-temperature superconductors are of great significance for the development of new quantum theory, the solution of high-temperature superconducting mechanism, the exploration of new superconductors and practical applications of superconductors. The macroscopic properties of materials are determined by their microscopic electronic structure. Revealing the microscopic electronic structure of high temperature superconductors is fundamental for understanding high temperature superconductivity. Angle-resolved photoelectron spectroscopy, due to its unique simultaneous energy, momentum and even spin resolving ability, has become the most direct and powerful experimental tool for detecting the microscopic electronic structure of materials, and has played an important role in the study of iron-based high-temperature superconductors. The revealing and discovery of the Fermi surface topology, superconducting energy gap and its symmetry, three-dimensionality, orbital selectivity, and electronic coupling mode in different iron-based superconductor systems provide an important basis for identifying and proposing new theory of iron-based superconductivity to solve high temperature superconductivity mechanism.
      通信作者: 赵林, lzhao@iphy.ac.cn;xjzhou@iphy.ac.cn ; 周兴江, lzhao@iphy.ac.cn;xjzhou@iphy.ac.cn
    • 基金项目: 国家重点基础研究发展计划(批准号:2016YFA0300300,2015CB921000)、国家自然科学基金(批准号:11334010)、中国科学院战略先导项目(批准号:XDB07020300,XDB25000000)和中国科学院青年促进会(批准号:2017013)资助的课题.
      Corresponding author: Zhao Lin, lzhao@iphy.ac.cn;xjzhou@iphy.ac.cn ; Zhou Xing-Jiang, lzhao@iphy.ac.cn;xjzhou@iphy.ac.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2016YFA0300300, 2015CB921000), the National Natural Science Foundation of China (Grant No. 11334010), the Strategic Priority Research Program (B) of Chinese Academy of Sciences (Grant Nos. XDB07020300, XDB25000000), and the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2017013).
    [1]

    Onnes H K 1911 Phys. Lab. Univ. Leiden 12 1911

    [2]

    Meissner W, Ochsenfeld R 1933 Naturwissenschaften 21 787

    [3]

    Gavaler J R 1973 Appl. Phys. Lett. 23 480

    [4]

    Bardeen J, Cooper L N, Schrieffer J T 1957 Phys. Rev 108 1175

    [5]

    Mcmillan W L 1968 Phys. Rev. 167 331

    [6]

    Bednorz J G, Mller K A 1986 Zeitschrift Fur Physik B: Condensed Matter 64 189

    [7]

    Wu M K, Ashburn J R, Torng C J, et al. 1987 Phys. Rev. Lett. 58 908

    [8]

    Zhao Z X 1987 Sci. Bull. 32 412 (in Chinese)[赵忠贤 1987 科学通报 32 412]

    [9]

    Kamihara Y, Watanabe T, Hirano M, Hasono H 2008 J. Am. Chem. Soc. 130 3296

    [10]

    Chen X H, Wu T, Wu G, et al. 2008 Nature 453 761

    [11]

    Chen G F, Li Z, Wu D, et al. 2008 Phys. Rev. Lett. 100 247002

    [12]

    Ren Z A, Yang J, Lu W, et al. 2008 Europhys. Lett. 82 57002

    [13]

    Hfner S 1996 Photoelectron Spectroscopy (Berlin Heidelberg: Springer-Verlag)

    [14]

    Liu G D, Wang G L, Zhu Y, et al. 2008 Rev. Sci. Instrum. 79 023105

    [15]

    Zhou X J, He S L, Liu G D, et al. 2018 Reports Prog. Phys. 81 062101

    [16]

    Damascelli A, Hussain Z, Shen Z X 2003 Rev. Mod. Phys. 75 473

    [17]

    Paglione J, Greene R L 2010 Nat. Phys. 6 645

    [18]

    Liu X, Zhao L, He S L, et al. 2015 J. Phys.: Condens. Matter 27 183201

    [19]

    Hsu F C, Luo J Y, Weh K W, et al. 2008 Proc. Natl. Acad. Sci. USA 105 14262

    [20]

    Wang X C, Liu Q Q, Lv Y X, et al. 2008 Solid State Commun. 148 538

    [21]

    Rotter M, Tegel M, Johrendt D 2008 Phys. Rev. Lett. 101 107006

    [22]

    Kamihara Y, Watanabe T, Hirano M, et al. 2008 J. Am. Chem. Soc. 130 3296

    [23]

    de la Cruz C, Huang Q, Lynn J W, Li J, Ii W R, Zarestky J L, Mook H A, Chen G F, Luo J L, Wang N L, Dai P C 2008 Nature 453 899

    [24]

    Huang Q, Qiu Y, Bao W, Green M A, Lynn J W, Gasparovic Y C, Wu T, Wu G, Chen X H 2008 Phys. Rev. Lett. 101 257003

    [25]

    Ma F J, Lu Z Y, Xiang T 2008 Phys. Rev. B 78 224517

    [26]

    Ma F J, Ji W, Hu J P, et al. 2009 Phys. Rev. Lett. 102 177003

    [27]

    Ma F J, Lu Z Y, Xiang T 2010 Front. Phys. China 5 150

    [28]

    Yildirim T 2008 Phys. Rev. Lett. 101 057010

    [29]

    Shibauchi T, Carrington A, Matsuda Y 2014 Ann. Rev. Con. Mater. Phys. 5 113

    [30]

    Rotter M, Tegel M, Johrendt D, et al. 2008 Phys. Rev. B 78 020503

    [31]

    Rotter M, Pangerl M, Tegel M, et al. 2008 Angew. Chem. Int. Ed. 47 7949

    [32]

    Ni N, Tillman M E, Yan J Q, et al. 2008 Phys. Rev. B 78 214515

    [33]

    Chu J H, Analytis J G, Kucharczyk C, et al. 2009 Phys. Rev. B 79 014506

    [34]

    Bud'ko S L, Ni N, Canfield P C 2009 Phys. Rev. B 79 220516R

    [35]

    Jiang S, Xing H, Xuan G, et al 2009 J. Phys.: Condens. Matter 21 382203

    [36]

    Yamazaki T, Takeshita N, Kobayashi R, et al. 2010 Phys. Rev. B 81 224511

    [37]

    Luetkens H, Klauss H H, Kraken M, et al. 2009 Nat. Mater. 8 305

    [38]

    Yan Y J, Zhang M, Wang A F, et al. 2012 Sci. Reports 2 212

    [39]

    Chen G F, Li Z, Dong J, et al. 2008 Phys. Rev. B 78 224512

    [40]

    Liu H Y, Zhang W T, Zhao L, et al. 2008 Phys. Rev. B 78 184514

    [41]

    Liu G D, Liu H Y, Zhao L, et al. 2009 Phys. Rev. B 80 134519

    [42]

    Liu H Y, Chen G F, Zhang W T, et al. 2010 Phys. Rev. Lett. 105 027001

    [43]

    Liu D F, Zhao L, He S L, et al. 2016 Chin. Phys. Lett. 33 077402

    [44]

    Zhao L, Liu H Y, Zhang W T, et al. 2008 Chin. Phys. Lett. 25 4402

    [45]

    Evtushinsky D V, Inosov D S, Zabolotnyy V B, et al. 2009 Phys. Rev. B 79 054517

    [46]

    Wray L, Qian D, Hsieh D, et al. 2008 Phys. Rev. B 78 184508

    [47]

    Zabolotnyy V B, Inosov D S, Evtushinsky D V, et al. 2009 Nature 457 569

    [48]

    Ding H, Richard P, Nakayama K, et al. 2008 Euro. Phys. Lett. 83 47001

    [49]

    Zhang Y, Yang L X, Chen F, et al. 2010 Phys. Rev. Lett. 105 117003

    [50]

    Shimojima T, Sakaguchi F, Ishizaka K, et al. 2011 Science 332 564

    [51]

    Dong J K, Zhou S Y, Guan T Y, et al. 2010 Phys. Rev. Lett. 104 087005

    [52]

    Terashima T, Kimata M, Kurita N, et al. 2010 Phys. Rev. Lett. 104 259701

    [53]

    Hashimoto K, Serafin A, Tonegawa S, et al 2010 Phys. Rev. B 82 014526

    [54]

    Zhang S W, Ma L, Hou Y D, et al. 2010 Phys. Rev. B 81 012503

    [55]

    Malaeb W, Shimojima T, Ishida Y, et al. 2012 Phys. Rev. B 86 165117

    [56]

    Zhang Y, Ye Z R, Ge Q Q, et al. 2012 Nat. Phys. 8 371

    [57]

    Xu H C, Niu X H, Xu D F, et al. 2016 Phys. Rev. Lett. 117 157003

    [58]

    Guo J G, Jin S F, Wang G, et al. 2010 Phys. Rev. B 82 180520

    [59]

    Krzton-Maziopa A, Shermadini Z, Pomjakushina E, et al. 2011 J. Phys. Condens. Matter 23 052203

    [60]

    Fang M H, Wang H D, Dong C H, et al. 2010 Europhys. Lett. 94 27009

    [61]

    Wang H D, Dong C H, Li Z J, et al. 2011 Europhys. Lett. 93 47004

    [62]

    Mou D X, Liu S Y, Jia X W, et al. 2011 Phys. Rev. Lett. 106 107001

    [63]

    Mou D X, Zhao L, Zhou X J 2011 Front. Phys. 6 410

    [64]

    Zhao L, Mou D X, Liu S Y, et al. 2011 Phys. Rev. B 83 140508

    [65]

    Zhang Y, Yang L X, Xu M, et al. 2011 Nat. Mater. 10 273

    [66]

    Qian T, Wang X P, Jin W C, et al. 2011 Phys. Rev. Lett. 106 187001

    [67]

    Kuroki K, Onari S, Arita R, et al. 2008 Phys. Rev. Lett. 101 087004

    [68]

    Mailer T A, Graser S, Hirschfeld P J, et al. 2011 Phys. Rev. B 83 100515

    [69]

    Wang F, Yang F, Gao M, et al. 2011 Europhys. Lett. 93 57003

    [70]

    Das T, Balatsky A V 2011 Phys. Rev. B 84 014521

    [71]

    He S L, He J F, Zhang W H, et al. 2013 Nat. Mater. 12 605

    [72]

    Song C L, Wang Y L, Cheng P, et al. 2011 Science 332 1410

    [73]

    zer M M, Thompson J R, Weiitering H H 2006 Nat. Phys. 2 173

    [74]

    Wang Q Y, Li Z, Zhang W H, et al. 2012 Chin. Phys. Lett. 29 037402

    [75]

    Liu X, Zhao L, He S L, et al. 2015 J. Phys.: Condens. Matter 27 183201

    [76]

    Liu D F, Zhang W H, Mou D X, et al. 2012 Nat. Commun. 3 931

    [77]

    Tan S Y, Zhang Y, Xia M, et al. 2013 Nat. Mater. 12 634

    [78]

    Lee J J, Schmitt F T, Moore R G, et al. 2014 Nature 515 245

    [79]

    Zhang W H, Li Z, Li F S, et al. 2014 Phys. Rev. B 89 060506

    [80]

    Ge J F, Liu Z L, Liu C H, et al. 2015 Nat. Mater. 14 285

    [81]

    He J F, Liu X, Zhang W H, et al. 2014 Proc. Natl. Acad. Sci. USA 111 18501

    [82]

    Peng Y Y, Meng J Q, Mou D X, et al. 2013 Nat. Commun. 4 2459

    [83]

    Liu X, Liu D F, Zhang W H, et al. 2014 Nat. Commun. 5 5047

    [84]

    Miyata Y, Nakayama K, Sugawara K, et al. 2015 Nat. Mater. 14 775

    [85]

    Dong X L, Jin K, Yuan D N, et al. 2015 Phys. Rev. B 92 064515

    [86]

    Zhao L, Liang A J, Yuan D N, et al. 2016 Nat. Commun. 7 10608

    [87]

    Dai Y M, Miao H, Xing L Y, et al. 2015 Phys. Rev. X 5 031035

    [88]

    Liu D F, Li C, Huang J W, et al. 2018 Phys. Rev. X 8 031033

    [89]

    Zhang H M, Zhang D, Lu X W, et al. 2017 Nat. Commun. 8 214

    [90]

    Hu Y, Xu Y, Wang Q Y, et al. 2018 Phys. Rev. B 97 224512

  • [1]

    Onnes H K 1911 Phys. Lab. Univ. Leiden 12 1911

    [2]

    Meissner W, Ochsenfeld R 1933 Naturwissenschaften 21 787

    [3]

    Gavaler J R 1973 Appl. Phys. Lett. 23 480

    [4]

    Bardeen J, Cooper L N, Schrieffer J T 1957 Phys. Rev 108 1175

    [5]

    Mcmillan W L 1968 Phys. Rev. 167 331

    [6]

    Bednorz J G, Mller K A 1986 Zeitschrift Fur Physik B: Condensed Matter 64 189

    [7]

    Wu M K, Ashburn J R, Torng C J, et al. 1987 Phys. Rev. Lett. 58 908

    [8]

    Zhao Z X 1987 Sci. Bull. 32 412 (in Chinese)[赵忠贤 1987 科学通报 32 412]

    [9]

    Kamihara Y, Watanabe T, Hirano M, Hasono H 2008 J. Am. Chem. Soc. 130 3296

    [10]

    Chen X H, Wu T, Wu G, et al. 2008 Nature 453 761

    [11]

    Chen G F, Li Z, Wu D, et al. 2008 Phys. Rev. Lett. 100 247002

    [12]

    Ren Z A, Yang J, Lu W, et al. 2008 Europhys. Lett. 82 57002

    [13]

    Hfner S 1996 Photoelectron Spectroscopy (Berlin Heidelberg: Springer-Verlag)

    [14]

    Liu G D, Wang G L, Zhu Y, et al. 2008 Rev. Sci. Instrum. 79 023105

    [15]

    Zhou X J, He S L, Liu G D, et al. 2018 Reports Prog. Phys. 81 062101

    [16]

    Damascelli A, Hussain Z, Shen Z X 2003 Rev. Mod. Phys. 75 473

    [17]

    Paglione J, Greene R L 2010 Nat. Phys. 6 645

    [18]

    Liu X, Zhao L, He S L, et al. 2015 J. Phys.: Condens. Matter 27 183201

    [19]

    Hsu F C, Luo J Y, Weh K W, et al. 2008 Proc. Natl. Acad. Sci. USA 105 14262

    [20]

    Wang X C, Liu Q Q, Lv Y X, et al. 2008 Solid State Commun. 148 538

    [21]

    Rotter M, Tegel M, Johrendt D 2008 Phys. Rev. Lett. 101 107006

    [22]

    Kamihara Y, Watanabe T, Hirano M, et al. 2008 J. Am. Chem. Soc. 130 3296

    [23]

    de la Cruz C, Huang Q, Lynn J W, Li J, Ii W R, Zarestky J L, Mook H A, Chen G F, Luo J L, Wang N L, Dai P C 2008 Nature 453 899

    [24]

    Huang Q, Qiu Y, Bao W, Green M A, Lynn J W, Gasparovic Y C, Wu T, Wu G, Chen X H 2008 Phys. Rev. Lett. 101 257003

    [25]

    Ma F J, Lu Z Y, Xiang T 2008 Phys. Rev. B 78 224517

    [26]

    Ma F J, Ji W, Hu J P, et al. 2009 Phys. Rev. Lett. 102 177003

    [27]

    Ma F J, Lu Z Y, Xiang T 2010 Front. Phys. China 5 150

    [28]

    Yildirim T 2008 Phys. Rev. Lett. 101 057010

    [29]

    Shibauchi T, Carrington A, Matsuda Y 2014 Ann. Rev. Con. Mater. Phys. 5 113

    [30]

    Rotter M, Tegel M, Johrendt D, et al. 2008 Phys. Rev. B 78 020503

    [31]

    Rotter M, Pangerl M, Tegel M, et al. 2008 Angew. Chem. Int. Ed. 47 7949

    [32]

    Ni N, Tillman M E, Yan J Q, et al. 2008 Phys. Rev. B 78 214515

    [33]

    Chu J H, Analytis J G, Kucharczyk C, et al. 2009 Phys. Rev. B 79 014506

    [34]

    Bud'ko S L, Ni N, Canfield P C 2009 Phys. Rev. B 79 220516R

    [35]

    Jiang S, Xing H, Xuan G, et al 2009 J. Phys.: Condens. Matter 21 382203

    [36]

    Yamazaki T, Takeshita N, Kobayashi R, et al. 2010 Phys. Rev. B 81 224511

    [37]

    Luetkens H, Klauss H H, Kraken M, et al. 2009 Nat. Mater. 8 305

    [38]

    Yan Y J, Zhang M, Wang A F, et al. 2012 Sci. Reports 2 212

    [39]

    Chen G F, Li Z, Dong J, et al. 2008 Phys. Rev. B 78 224512

    [40]

    Liu H Y, Zhang W T, Zhao L, et al. 2008 Phys. Rev. B 78 184514

    [41]

    Liu G D, Liu H Y, Zhao L, et al. 2009 Phys. Rev. B 80 134519

    [42]

    Liu H Y, Chen G F, Zhang W T, et al. 2010 Phys. Rev. Lett. 105 027001

    [43]

    Liu D F, Zhao L, He S L, et al. 2016 Chin. Phys. Lett. 33 077402

    [44]

    Zhao L, Liu H Y, Zhang W T, et al. 2008 Chin. Phys. Lett. 25 4402

    [45]

    Evtushinsky D V, Inosov D S, Zabolotnyy V B, et al. 2009 Phys. Rev. B 79 054517

    [46]

    Wray L, Qian D, Hsieh D, et al. 2008 Phys. Rev. B 78 184508

    [47]

    Zabolotnyy V B, Inosov D S, Evtushinsky D V, et al. 2009 Nature 457 569

    [48]

    Ding H, Richard P, Nakayama K, et al. 2008 Euro. Phys. Lett. 83 47001

    [49]

    Zhang Y, Yang L X, Chen F, et al. 2010 Phys. Rev. Lett. 105 117003

    [50]

    Shimojima T, Sakaguchi F, Ishizaka K, et al. 2011 Science 332 564

    [51]

    Dong J K, Zhou S Y, Guan T Y, et al. 2010 Phys. Rev. Lett. 104 087005

    [52]

    Terashima T, Kimata M, Kurita N, et al. 2010 Phys. Rev. Lett. 104 259701

    [53]

    Hashimoto K, Serafin A, Tonegawa S, et al 2010 Phys. Rev. B 82 014526

    [54]

    Zhang S W, Ma L, Hou Y D, et al. 2010 Phys. Rev. B 81 012503

    [55]

    Malaeb W, Shimojima T, Ishida Y, et al. 2012 Phys. Rev. B 86 165117

    [56]

    Zhang Y, Ye Z R, Ge Q Q, et al. 2012 Nat. Phys. 8 371

    [57]

    Xu H C, Niu X H, Xu D F, et al. 2016 Phys. Rev. Lett. 117 157003

    [58]

    Guo J G, Jin S F, Wang G, et al. 2010 Phys. Rev. B 82 180520

    [59]

    Krzton-Maziopa A, Shermadini Z, Pomjakushina E, et al. 2011 J. Phys. Condens. Matter 23 052203

    [60]

    Fang M H, Wang H D, Dong C H, et al. 2010 Europhys. Lett. 94 27009

    [61]

    Wang H D, Dong C H, Li Z J, et al. 2011 Europhys. Lett. 93 47004

    [62]

    Mou D X, Liu S Y, Jia X W, et al. 2011 Phys. Rev. Lett. 106 107001

    [63]

    Mou D X, Zhao L, Zhou X J 2011 Front. Phys. 6 410

    [64]

    Zhao L, Mou D X, Liu S Y, et al. 2011 Phys. Rev. B 83 140508

    [65]

    Zhang Y, Yang L X, Xu M, et al. 2011 Nat. Mater. 10 273

    [66]

    Qian T, Wang X P, Jin W C, et al. 2011 Phys. Rev. Lett. 106 187001

    [67]

    Kuroki K, Onari S, Arita R, et al. 2008 Phys. Rev. Lett. 101 087004

    [68]

    Mailer T A, Graser S, Hirschfeld P J, et al. 2011 Phys. Rev. B 83 100515

    [69]

    Wang F, Yang F, Gao M, et al. 2011 Europhys. Lett. 93 57003

    [70]

    Das T, Balatsky A V 2011 Phys. Rev. B 84 014521

    [71]

    He S L, He J F, Zhang W H, et al. 2013 Nat. Mater. 12 605

    [72]

    Song C L, Wang Y L, Cheng P, et al. 2011 Science 332 1410

    [73]

    zer M M, Thompson J R, Weiitering H H 2006 Nat. Phys. 2 173

    [74]

    Wang Q Y, Li Z, Zhang W H, et al. 2012 Chin. Phys. Lett. 29 037402

    [75]

    Liu X, Zhao L, He S L, et al. 2015 J. Phys.: Condens. Matter 27 183201

    [76]

    Liu D F, Zhang W H, Mou D X, et al. 2012 Nat. Commun. 3 931

    [77]

    Tan S Y, Zhang Y, Xia M, et al. 2013 Nat. Mater. 12 634

    [78]

    Lee J J, Schmitt F T, Moore R G, et al. 2014 Nature 515 245

    [79]

    Zhang W H, Li Z, Li F S, et al. 2014 Phys. Rev. B 89 060506

    [80]

    Ge J F, Liu Z L, Liu C H, et al. 2015 Nat. Mater. 14 285

    [81]

    He J F, Liu X, Zhang W H, et al. 2014 Proc. Natl. Acad. Sci. USA 111 18501

    [82]

    Peng Y Y, Meng J Q, Mou D X, et al. 2013 Nat. Commun. 4 2459

    [83]

    Liu X, Liu D F, Zhang W H, et al. 2014 Nat. Commun. 5 5047

    [84]

    Miyata Y, Nakayama K, Sugawara K, et al. 2015 Nat. Mater. 14 775

    [85]

    Dong X L, Jin K, Yuan D N, et al. 2015 Phys. Rev. B 92 064515

    [86]

    Zhao L, Liang A J, Yuan D N, et al. 2016 Nat. Commun. 7 10608

    [87]

    Dai Y M, Miao H, Xing L Y, et al. 2015 Phys. Rev. X 5 031035

    [88]

    Liu D F, Li C, Huang J W, et al. 2018 Phys. Rev. X 8 031033

    [89]

    Zhang H M, Zhang D, Lu X W, et al. 2017 Nat. Commun. 8 214

    [90]

    Hu Y, Xu Y, Wang Q Y, et al. 2018 Phys. Rev. B 97 224512

计量
  • 文章访问数:  2376
  • PDF下载量:  267
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-26
  • 修回日期:  2018-10-10
  • 刊出日期:  2019-10-20

铁基高温超导体电子结构的角分辨光电子能谱研究

    基金项目: 

    国家重点基础研究发展计划(批准号:2016YFA0300300,2015CB921000)、国家自然科学基金(批准号:11334010)、中国科学院战略先导项目(批准号:XDB07020300,XDB25000000)和中国科学院青年促进会(批准号:2017013)资助的课题.

摘要: 铜氧化物超导体和铁基超导体是人类相继发现的两类高温超导家族,它们的高温超导机理是凝聚态物理领域中长期争论但悬而未决的重大问题.对铁基超导体广泛而深入的研究,以及与铜氧化物高温超导体的对比,对于发展新的量子固体理论、解决高温超导机理、探索新的超导体以及超导实际应用都具有重要意义.固体材料的宏观物性由其微观电子结构所决定,揭示高温超导材料的微观电子结构是理解高温超导电性的前提和基础.由于角分辨光电子能谱技术具有独特的同时对能量、动量甚至自旋的分辨能力,已成为探测材料微观电子结构的最直接、最有力的实验手段,在高温超导体的研究中发挥了重要作用.本文综述了在不同体系铁基超导体中费米面拓扑结构、超导能隙大小和对称性、轨道三维性和选择性、电子耦合模式等的揭示和发现,为甄别和提出铁基超导新理论、解决高温超导机理问题提供重要依据.

English Abstract

参考文献 (90)

目录

    /

    返回文章
    返回