搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁基高温超导体电子结构的角分辨光电子能谱研究

赵林 刘国东 周兴江

引用本文:
Citation:

铁基高温超导体电子结构的角分辨光电子能谱研究

赵林, 刘国东, 周兴江

Angle-resolved photoemission studies on iron based high temperature superconductors

Zhao Lin, Liu Guo-Dong, Zhou Xing-Jiang
PDF
导出引用
  • 铜氧化物超导体和铁基超导体是人类相继发现的两类高温超导家族,它们的高温超导机理是凝聚态物理领域中长期争论但悬而未决的重大问题.对铁基超导体广泛而深入的研究,以及与铜氧化物高温超导体的对比,对于发展新的量子固体理论、解决高温超导机理、探索新的超导体以及超导实际应用都具有重要意义.固体材料的宏观物性由其微观电子结构所决定,揭示高温超导材料的微观电子结构是理解高温超导电性的前提和基础.由于角分辨光电子能谱技术具有独特的同时对能量、动量甚至自旋的分辨能力,已成为探测材料微观电子结构的最直接、最有力的实验手段,在高温超导体的研究中发挥了重要作用.本文综述了在不同体系铁基超导体中费米面拓扑结构、超导能隙大小和对称性、轨道三维性和选择性、电子耦合模式等的揭示和发现,为甄别和提出铁基超导新理论、解决高温超导机理问题提供重要依据.
    Copper oxide superconductors and iron-based superconductors are two important families of high temperature superconductors. Their high-temperature superconductivity mechanism is a long-standing issue and still in hot debate in the field of condensed matter physics. The extensive and in-depth exploration of iron-based superconductors and their comparative study with copper oxide high-temperature superconductors are of great significance for the development of new quantum theory, the solution of high-temperature superconducting mechanism, the exploration of new superconductors and practical applications of superconductors. The macroscopic properties of materials are determined by their microscopic electronic structure. Revealing the microscopic electronic structure of high temperature superconductors is fundamental for understanding high temperature superconductivity. Angle-resolved photoelectron spectroscopy, due to its unique simultaneous energy, momentum and even spin resolving ability, has become the most direct and powerful experimental tool for detecting the microscopic electronic structure of materials, and has played an important role in the study of iron-based high-temperature superconductors. The revealing and discovery of the Fermi surface topology, superconducting energy gap and its symmetry, three-dimensionality, orbital selectivity, and electronic coupling mode in different iron-based superconductor systems provide an important basis for identifying and proposing new theory of iron-based superconductivity to solve high temperature superconductivity mechanism.
      通信作者: 赵林, lzhao@iphy.ac.cn;xjzhou@iphy.ac.cn ; 周兴江, lzhao@iphy.ac.cn;xjzhou@iphy.ac.cn
    • 基金项目: 国家重点基础研究发展计划(批准号:2016YFA0300300,2015CB921000)、国家自然科学基金(批准号:11334010)、中国科学院战略先导项目(批准号:XDB07020300,XDB25000000)和中国科学院青年促进会(批准号:2017013)资助的课题.
      Corresponding author: Zhao Lin, lzhao@iphy.ac.cn;xjzhou@iphy.ac.cn ; Zhou Xing-Jiang, lzhao@iphy.ac.cn;xjzhou@iphy.ac.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2016YFA0300300, 2015CB921000), the National Natural Science Foundation of China (Grant No. 11334010), the Strategic Priority Research Program (B) of Chinese Academy of Sciences (Grant Nos. XDB07020300, XDB25000000), and the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2017013).
    [1]

    Onnes H K 1911 Phys. Lab. Univ. Leiden 12 1911

    [2]

    Meissner W, Ochsenfeld R 1933 Naturwissenschaften 21 787

    [3]

    Gavaler J R 1973 Appl. Phys. Lett. 23 480

    [4]

    Bardeen J, Cooper L N, Schrieffer J T 1957 Phys. Rev 108 1175

    [5]

    Mcmillan W L 1968 Phys. Rev. 167 331

    [6]

    Bednorz J G, Mller K A 1986 Zeitschrift Fur Physik B: Condensed Matter 64 189

    [7]

    Wu M K, Ashburn J R, Torng C J, et al. 1987 Phys. Rev. Lett. 58 908

    [8]

    Zhao Z X 1987 Sci. Bull. 32 412 (in Chinese)[赵忠贤 1987 科学通报 32 412]

    [9]

    Kamihara Y, Watanabe T, Hirano M, Hasono H 2008 J. Am. Chem. Soc. 130 3296

    [10]

    Chen X H, Wu T, Wu G, et al. 2008 Nature 453 761

    [11]

    Chen G F, Li Z, Wu D, et al. 2008 Phys. Rev. Lett. 100 247002

    [12]

    Ren Z A, Yang J, Lu W, et al. 2008 Europhys. Lett. 82 57002

    [13]

    Hfner S 1996 Photoelectron Spectroscopy (Berlin Heidelberg: Springer-Verlag)

    [14]

    Liu G D, Wang G L, Zhu Y, et al. 2008 Rev. Sci. Instrum. 79 023105

    [15]

    Zhou X J, He S L, Liu G D, et al. 2018 Reports Prog. Phys. 81 062101

    [16]

    Damascelli A, Hussain Z, Shen Z X 2003 Rev. Mod. Phys. 75 473

    [17]

    Paglione J, Greene R L 2010 Nat. Phys. 6 645

    [18]

    Liu X, Zhao L, He S L, et al. 2015 J. Phys.: Condens. Matter 27 183201

    [19]

    Hsu F C, Luo J Y, Weh K W, et al. 2008 Proc. Natl. Acad. Sci. USA 105 14262

    [20]

    Wang X C, Liu Q Q, Lv Y X, et al. 2008 Solid State Commun. 148 538

    [21]

    Rotter M, Tegel M, Johrendt D 2008 Phys. Rev. Lett. 101 107006

    [22]

    Kamihara Y, Watanabe T, Hirano M, et al. 2008 J. Am. Chem. Soc. 130 3296

    [23]

    de la Cruz C, Huang Q, Lynn J W, Li J, Ii W R, Zarestky J L, Mook H A, Chen G F, Luo J L, Wang N L, Dai P C 2008 Nature 453 899

    [24]

    Huang Q, Qiu Y, Bao W, Green M A, Lynn J W, Gasparovic Y C, Wu T, Wu G, Chen X H 2008 Phys. Rev. Lett. 101 257003

    [25]

    Ma F J, Lu Z Y, Xiang T 2008 Phys. Rev. B 78 224517

    [26]

    Ma F J, Ji W, Hu J P, et al. 2009 Phys. Rev. Lett. 102 177003

    [27]

    Ma F J, Lu Z Y, Xiang T 2010 Front. Phys. China 5 150

    [28]

    Yildirim T 2008 Phys. Rev. Lett. 101 057010

    [29]

    Shibauchi T, Carrington A, Matsuda Y 2014 Ann. Rev. Con. Mater. Phys. 5 113

    [30]

    Rotter M, Tegel M, Johrendt D, et al. 2008 Phys. Rev. B 78 020503

    [31]

    Rotter M, Pangerl M, Tegel M, et al. 2008 Angew. Chem. Int. Ed. 47 7949

    [32]

    Ni N, Tillman M E, Yan J Q, et al. 2008 Phys. Rev. B 78 214515

    [33]

    Chu J H, Analytis J G, Kucharczyk C, et al. 2009 Phys. Rev. B 79 014506

    [34]

    Bud'ko S L, Ni N, Canfield P C 2009 Phys. Rev. B 79 220516R

    [35]

    Jiang S, Xing H, Xuan G, et al 2009 J. Phys.: Condens. Matter 21 382203

    [36]

    Yamazaki T, Takeshita N, Kobayashi R, et al. 2010 Phys. Rev. B 81 224511

    [37]

    Luetkens H, Klauss H H, Kraken M, et al. 2009 Nat. Mater. 8 305

    [38]

    Yan Y J, Zhang M, Wang A F, et al. 2012 Sci. Reports 2 212

    [39]

    Chen G F, Li Z, Dong J, et al. 2008 Phys. Rev. B 78 224512

    [40]

    Liu H Y, Zhang W T, Zhao L, et al. 2008 Phys. Rev. B 78 184514

    [41]

    Liu G D, Liu H Y, Zhao L, et al. 2009 Phys. Rev. B 80 134519

    [42]

    Liu H Y, Chen G F, Zhang W T, et al. 2010 Phys. Rev. Lett. 105 027001

    [43]

    Liu D F, Zhao L, He S L, et al. 2016 Chin. Phys. Lett. 33 077402

    [44]

    Zhao L, Liu H Y, Zhang W T, et al. 2008 Chin. Phys. Lett. 25 4402

    [45]

    Evtushinsky D V, Inosov D S, Zabolotnyy V B, et al. 2009 Phys. Rev. B 79 054517

    [46]

    Wray L, Qian D, Hsieh D, et al. 2008 Phys. Rev. B 78 184508

    [47]

    Zabolotnyy V B, Inosov D S, Evtushinsky D V, et al. 2009 Nature 457 569

    [48]

    Ding H, Richard P, Nakayama K, et al. 2008 Euro. Phys. Lett. 83 47001

    [49]

    Zhang Y, Yang L X, Chen F, et al. 2010 Phys. Rev. Lett. 105 117003

    [50]

    Shimojima T, Sakaguchi F, Ishizaka K, et al. 2011 Science 332 564

    [51]

    Dong J K, Zhou S Y, Guan T Y, et al. 2010 Phys. Rev. Lett. 104 087005

    [52]

    Terashima T, Kimata M, Kurita N, et al. 2010 Phys. Rev. Lett. 104 259701

    [53]

    Hashimoto K, Serafin A, Tonegawa S, et al 2010 Phys. Rev. B 82 014526

    [54]

    Zhang S W, Ma L, Hou Y D, et al. 2010 Phys. Rev. B 81 012503

    [55]

    Malaeb W, Shimojima T, Ishida Y, et al. 2012 Phys. Rev. B 86 165117

    [56]

    Zhang Y, Ye Z R, Ge Q Q, et al. 2012 Nat. Phys. 8 371

    [57]

    Xu H C, Niu X H, Xu D F, et al. 2016 Phys. Rev. Lett. 117 157003

    [58]

    Guo J G, Jin S F, Wang G, et al. 2010 Phys. Rev. B 82 180520

    [59]

    Krzton-Maziopa A, Shermadini Z, Pomjakushina E, et al. 2011 J. Phys. Condens. Matter 23 052203

    [60]

    Fang M H, Wang H D, Dong C H, et al. 2010 Europhys. Lett. 94 27009

    [61]

    Wang H D, Dong C H, Li Z J, et al. 2011 Europhys. Lett. 93 47004

    [62]

    Mou D X, Liu S Y, Jia X W, et al. 2011 Phys. Rev. Lett. 106 107001

    [63]

    Mou D X, Zhao L, Zhou X J 2011 Front. Phys. 6 410

    [64]

    Zhao L, Mou D X, Liu S Y, et al. 2011 Phys. Rev. B 83 140508

    [65]

    Zhang Y, Yang L X, Xu M, et al. 2011 Nat. Mater. 10 273

    [66]

    Qian T, Wang X P, Jin W C, et al. 2011 Phys. Rev. Lett. 106 187001

    [67]

    Kuroki K, Onari S, Arita R, et al. 2008 Phys. Rev. Lett. 101 087004

    [68]

    Mailer T A, Graser S, Hirschfeld P J, et al. 2011 Phys. Rev. B 83 100515

    [69]

    Wang F, Yang F, Gao M, et al. 2011 Europhys. Lett. 93 57003

    [70]

    Das T, Balatsky A V 2011 Phys. Rev. B 84 014521

    [71]

    He S L, He J F, Zhang W H, et al. 2013 Nat. Mater. 12 605

    [72]

    Song C L, Wang Y L, Cheng P, et al. 2011 Science 332 1410

    [73]

    zer M M, Thompson J R, Weiitering H H 2006 Nat. Phys. 2 173

    [74]

    Wang Q Y, Li Z, Zhang W H, et al. 2012 Chin. Phys. Lett. 29 037402

    [75]

    Liu X, Zhao L, He S L, et al. 2015 J. Phys.: Condens. Matter 27 183201

    [76]

    Liu D F, Zhang W H, Mou D X, et al. 2012 Nat. Commun. 3 931

    [77]

    Tan S Y, Zhang Y, Xia M, et al. 2013 Nat. Mater. 12 634

    [78]

    Lee J J, Schmitt F T, Moore R G, et al. 2014 Nature 515 245

    [79]

    Zhang W H, Li Z, Li F S, et al. 2014 Phys. Rev. B 89 060506

    [80]

    Ge J F, Liu Z L, Liu C H, et al. 2015 Nat. Mater. 14 285

    [81]

    He J F, Liu X, Zhang W H, et al. 2014 Proc. Natl. Acad. Sci. USA 111 18501

    [82]

    Peng Y Y, Meng J Q, Mou D X, et al. 2013 Nat. Commun. 4 2459

    [83]

    Liu X, Liu D F, Zhang W H, et al. 2014 Nat. Commun. 5 5047

    [84]

    Miyata Y, Nakayama K, Sugawara K, et al. 2015 Nat. Mater. 14 775

    [85]

    Dong X L, Jin K, Yuan D N, et al. 2015 Phys. Rev. B 92 064515

    [86]

    Zhao L, Liang A J, Yuan D N, et al. 2016 Nat. Commun. 7 10608

    [87]

    Dai Y M, Miao H, Xing L Y, et al. 2015 Phys. Rev. X 5 031035

    [88]

    Liu D F, Li C, Huang J W, et al. 2018 Phys. Rev. X 8 031033

    [89]

    Zhang H M, Zhang D, Lu X W, et al. 2017 Nat. Commun. 8 214

    [90]

    Hu Y, Xu Y, Wang Q Y, et al. 2018 Phys. Rev. B 97 224512

  • [1]

    Onnes H K 1911 Phys. Lab. Univ. Leiden 12 1911

    [2]

    Meissner W, Ochsenfeld R 1933 Naturwissenschaften 21 787

    [3]

    Gavaler J R 1973 Appl. Phys. Lett. 23 480

    [4]

    Bardeen J, Cooper L N, Schrieffer J T 1957 Phys. Rev 108 1175

    [5]

    Mcmillan W L 1968 Phys. Rev. 167 331

    [6]

    Bednorz J G, Mller K A 1986 Zeitschrift Fur Physik B: Condensed Matter 64 189

    [7]

    Wu M K, Ashburn J R, Torng C J, et al. 1987 Phys. Rev. Lett. 58 908

    [8]

    Zhao Z X 1987 Sci. Bull. 32 412 (in Chinese)[赵忠贤 1987 科学通报 32 412]

    [9]

    Kamihara Y, Watanabe T, Hirano M, Hasono H 2008 J. Am. Chem. Soc. 130 3296

    [10]

    Chen X H, Wu T, Wu G, et al. 2008 Nature 453 761

    [11]

    Chen G F, Li Z, Wu D, et al. 2008 Phys. Rev. Lett. 100 247002

    [12]

    Ren Z A, Yang J, Lu W, et al. 2008 Europhys. Lett. 82 57002

    [13]

    Hfner S 1996 Photoelectron Spectroscopy (Berlin Heidelberg: Springer-Verlag)

    [14]

    Liu G D, Wang G L, Zhu Y, et al. 2008 Rev. Sci. Instrum. 79 023105

    [15]

    Zhou X J, He S L, Liu G D, et al. 2018 Reports Prog. Phys. 81 062101

    [16]

    Damascelli A, Hussain Z, Shen Z X 2003 Rev. Mod. Phys. 75 473

    [17]

    Paglione J, Greene R L 2010 Nat. Phys. 6 645

    [18]

    Liu X, Zhao L, He S L, et al. 2015 J. Phys.: Condens. Matter 27 183201

    [19]

    Hsu F C, Luo J Y, Weh K W, et al. 2008 Proc. Natl. Acad. Sci. USA 105 14262

    [20]

    Wang X C, Liu Q Q, Lv Y X, et al. 2008 Solid State Commun. 148 538

    [21]

    Rotter M, Tegel M, Johrendt D 2008 Phys. Rev. Lett. 101 107006

    [22]

    Kamihara Y, Watanabe T, Hirano M, et al. 2008 J. Am. Chem. Soc. 130 3296

    [23]

    de la Cruz C, Huang Q, Lynn J W, Li J, Ii W R, Zarestky J L, Mook H A, Chen G F, Luo J L, Wang N L, Dai P C 2008 Nature 453 899

    [24]

    Huang Q, Qiu Y, Bao W, Green M A, Lynn J W, Gasparovic Y C, Wu T, Wu G, Chen X H 2008 Phys. Rev. Lett. 101 257003

    [25]

    Ma F J, Lu Z Y, Xiang T 2008 Phys. Rev. B 78 224517

    [26]

    Ma F J, Ji W, Hu J P, et al. 2009 Phys. Rev. Lett. 102 177003

    [27]

    Ma F J, Lu Z Y, Xiang T 2010 Front. Phys. China 5 150

    [28]

    Yildirim T 2008 Phys. Rev. Lett. 101 057010

    [29]

    Shibauchi T, Carrington A, Matsuda Y 2014 Ann. Rev. Con. Mater. Phys. 5 113

    [30]

    Rotter M, Tegel M, Johrendt D, et al. 2008 Phys. Rev. B 78 020503

    [31]

    Rotter M, Pangerl M, Tegel M, et al. 2008 Angew. Chem. Int. Ed. 47 7949

    [32]

    Ni N, Tillman M E, Yan J Q, et al. 2008 Phys. Rev. B 78 214515

    [33]

    Chu J H, Analytis J G, Kucharczyk C, et al. 2009 Phys. Rev. B 79 014506

    [34]

    Bud'ko S L, Ni N, Canfield P C 2009 Phys. Rev. B 79 220516R

    [35]

    Jiang S, Xing H, Xuan G, et al 2009 J. Phys.: Condens. Matter 21 382203

    [36]

    Yamazaki T, Takeshita N, Kobayashi R, et al. 2010 Phys. Rev. B 81 224511

    [37]

    Luetkens H, Klauss H H, Kraken M, et al. 2009 Nat. Mater. 8 305

    [38]

    Yan Y J, Zhang M, Wang A F, et al. 2012 Sci. Reports 2 212

    [39]

    Chen G F, Li Z, Dong J, et al. 2008 Phys. Rev. B 78 224512

    [40]

    Liu H Y, Zhang W T, Zhao L, et al. 2008 Phys. Rev. B 78 184514

    [41]

    Liu G D, Liu H Y, Zhao L, et al. 2009 Phys. Rev. B 80 134519

    [42]

    Liu H Y, Chen G F, Zhang W T, et al. 2010 Phys. Rev. Lett. 105 027001

    [43]

    Liu D F, Zhao L, He S L, et al. 2016 Chin. Phys. Lett. 33 077402

    [44]

    Zhao L, Liu H Y, Zhang W T, et al. 2008 Chin. Phys. Lett. 25 4402

    [45]

    Evtushinsky D V, Inosov D S, Zabolotnyy V B, et al. 2009 Phys. Rev. B 79 054517

    [46]

    Wray L, Qian D, Hsieh D, et al. 2008 Phys. Rev. B 78 184508

    [47]

    Zabolotnyy V B, Inosov D S, Evtushinsky D V, et al. 2009 Nature 457 569

    [48]

    Ding H, Richard P, Nakayama K, et al. 2008 Euro. Phys. Lett. 83 47001

    [49]

    Zhang Y, Yang L X, Chen F, et al. 2010 Phys. Rev. Lett. 105 117003

    [50]

    Shimojima T, Sakaguchi F, Ishizaka K, et al. 2011 Science 332 564

    [51]

    Dong J K, Zhou S Y, Guan T Y, et al. 2010 Phys. Rev. Lett. 104 087005

    [52]

    Terashima T, Kimata M, Kurita N, et al. 2010 Phys. Rev. Lett. 104 259701

    [53]

    Hashimoto K, Serafin A, Tonegawa S, et al 2010 Phys. Rev. B 82 014526

    [54]

    Zhang S W, Ma L, Hou Y D, et al. 2010 Phys. Rev. B 81 012503

    [55]

    Malaeb W, Shimojima T, Ishida Y, et al. 2012 Phys. Rev. B 86 165117

    [56]

    Zhang Y, Ye Z R, Ge Q Q, et al. 2012 Nat. Phys. 8 371

    [57]

    Xu H C, Niu X H, Xu D F, et al. 2016 Phys. Rev. Lett. 117 157003

    [58]

    Guo J G, Jin S F, Wang G, et al. 2010 Phys. Rev. B 82 180520

    [59]

    Krzton-Maziopa A, Shermadini Z, Pomjakushina E, et al. 2011 J. Phys. Condens. Matter 23 052203

    [60]

    Fang M H, Wang H D, Dong C H, et al. 2010 Europhys. Lett. 94 27009

    [61]

    Wang H D, Dong C H, Li Z J, et al. 2011 Europhys. Lett. 93 47004

    [62]

    Mou D X, Liu S Y, Jia X W, et al. 2011 Phys. Rev. Lett. 106 107001

    [63]

    Mou D X, Zhao L, Zhou X J 2011 Front. Phys. 6 410

    [64]

    Zhao L, Mou D X, Liu S Y, et al. 2011 Phys. Rev. B 83 140508

    [65]

    Zhang Y, Yang L X, Xu M, et al. 2011 Nat. Mater. 10 273

    [66]

    Qian T, Wang X P, Jin W C, et al. 2011 Phys. Rev. Lett. 106 187001

    [67]

    Kuroki K, Onari S, Arita R, et al. 2008 Phys. Rev. Lett. 101 087004

    [68]

    Mailer T A, Graser S, Hirschfeld P J, et al. 2011 Phys. Rev. B 83 100515

    [69]

    Wang F, Yang F, Gao M, et al. 2011 Europhys. Lett. 93 57003

    [70]

    Das T, Balatsky A V 2011 Phys. Rev. B 84 014521

    [71]

    He S L, He J F, Zhang W H, et al. 2013 Nat. Mater. 12 605

    [72]

    Song C L, Wang Y L, Cheng P, et al. 2011 Science 332 1410

    [73]

    zer M M, Thompson J R, Weiitering H H 2006 Nat. Phys. 2 173

    [74]

    Wang Q Y, Li Z, Zhang W H, et al. 2012 Chin. Phys. Lett. 29 037402

    [75]

    Liu X, Zhao L, He S L, et al. 2015 J. Phys.: Condens. Matter 27 183201

    [76]

    Liu D F, Zhang W H, Mou D X, et al. 2012 Nat. Commun. 3 931

    [77]

    Tan S Y, Zhang Y, Xia M, et al. 2013 Nat. Mater. 12 634

    [78]

    Lee J J, Schmitt F T, Moore R G, et al. 2014 Nature 515 245

    [79]

    Zhang W H, Li Z, Li F S, et al. 2014 Phys. Rev. B 89 060506

    [80]

    Ge J F, Liu Z L, Liu C H, et al. 2015 Nat. Mater. 14 285

    [81]

    He J F, Liu X, Zhang W H, et al. 2014 Proc. Natl. Acad. Sci. USA 111 18501

    [82]

    Peng Y Y, Meng J Q, Mou D X, et al. 2013 Nat. Commun. 4 2459

    [83]

    Liu X, Liu D F, Zhang W H, et al. 2014 Nat. Commun. 5 5047

    [84]

    Miyata Y, Nakayama K, Sugawara K, et al. 2015 Nat. Mater. 14 775

    [85]

    Dong X L, Jin K, Yuan D N, et al. 2015 Phys. Rev. B 92 064515

    [86]

    Zhao L, Liang A J, Yuan D N, et al. 2016 Nat. Commun. 7 10608

    [87]

    Dai Y M, Miao H, Xing L Y, et al. 2015 Phys. Rev. X 5 031035

    [88]

    Liu D F, Li C, Huang J W, et al. 2018 Phys. Rev. X 8 031033

    [89]

    Zhang H M, Zhang D, Lu X W, et al. 2017 Nat. Commun. 8 214

    [90]

    Hu Y, Xu Y, Wang Q Y, et al. 2018 Phys. Rev. B 97 224512

  • [1] 李泽众, 洪文山, 谢涛, 刘畅, 罗会仟. 铁砷化物超导体的自旋激发谱. 物理学报, 2025, 74(1): 017401. doi: 10.7498/aps.74.20241534
    [2] 魏志远, 胡勇, 曾令勇, 李泽宇, 乔振华, 罗惠霞, 何俊峰. 1T-NbSeTe电子结构的角分辨光电子能谱. 物理学报, 2022, 71(12): 127901. doi: 10.7498/aps.71.20220458
    [3] 赵林, 刘国东, 周兴江. 高温超导体电子结构和超导机理的角分辨光电子能谱研究. 物理学报, 2021, 70(1): 017406. doi: 10.7498/aps.70.20201913
    [4] 王海波, 罗震林, 刘清青, 靳常青, 高琛, 张丽. 共振X射线衍射研究高温超导Sr2CuO3.4晶体中的调制结构. 物理学报, 2019, 68(18): 187401. doi: 10.7498/aps.68.20190494
    [5] 刘畅, 刘祥瑞. 强三维拓扑绝缘体与磁性拓扑绝缘体的角分辨光电子能谱学研究进展. 物理学报, 2019, 68(22): 227901. doi: 10.7498/aps.68.20191450
    [6] 邓韬, 杨海峰, 张敬, 李一苇, 杨乐仙, 柳仲楷, 陈宇林. 拓扑半金属材料角分辨光电子能谱研究进展. 物理学报, 2019, 68(22): 227102. doi: 10.7498/aps.68.20191544
    [7] 龚冬良, 罗会仟. 铁基超导体中的反铁磁序和自旋动力学. 物理学报, 2018, 67(20): 207407. doi: 10.7498/aps.67.20181543
    [8] 王萌, 欧云波, 李坊森, 张文号, 汤辰佳, 王立莉, 薛其坤, 马旭村. SrTiO3(001)衬底上单层FeSe超导薄膜的分子束外延生长. 物理学报, 2014, 63(2): 027401. doi: 10.7498/aps.63.027401
    [9] 郝颖萍, 陈祥磊, 成斌, 孔伟, 许红霞, 杜淮江, 叶邦角. SmFeAsO材料的正电子寿命研究. 物理学报, 2010, 59(4): 2789-2794. doi: 10.7498/aps.59.2789
    [10] 左涛, 赵新杰, 王小坤, 岳宏卫, 方兰, 阎少林. LaAlO3衬底高温超导线性相位滤波器. 物理学报, 2009, 58(6): 4194-4198. doi: 10.7498/aps.58.4194
    [11] 赵宏伟, 孟豪, 张凌峰, 查国桥, 周世平. 欠掺杂高温超导体中的涡旋电荷结构相变. 物理学报, 2009, 58(6): 4189-4193. doi: 10.7498/aps.58.4189
    [12] 武煜宇, 陈石, 高新宇, Andrew Thye Shen Wee, 徐彭寿. 6H-SiC(0001)-6[KF(]3[KF)]×6[KF(]3[KF)]R30°重构表面的同步辐射角分辨光电子能谱研究. 物理学报, 2009, 58(6): 4288-4294. doi: 10.7498/aps.58.4288
    [13] 尤育新, 赵志刚, 王 进, 刘 楣. 高温超导体中约瑟夫森涡旋流阻的振荡效应. 物理学报, 2008, 57(11): 7252-7256. doi: 10.7498/aps.57.7252
    [14] 梁芳营, 刘 洪, 李英骏. 高温超导的压力效应研究. 物理学报, 2006, 55(7): 3683-3687. doi: 10.7498/aps.55.3683
    [15] 陈 丽, 李 华. 新型超导材料MgCNi3的电子结构与超导电性研究. 物理学报, 2004, 53(3): 922-926. doi: 10.7498/aps.53.922
    [16] 杨志红, 施大宁, 罗达峰. 层间耦合与高温超导体角分辨光电子能谱和Ba位替代效应. 物理学报, 2004, 53(11): 3902-3908. doi: 10.7498/aps.53.3902
    [17] 谭明秋, 陶向明, 徐小军, 何军辉, 叶高翔. MgCNi3的电子结构、光学性质与超导电性. 物理学报, 2003, 52(2): 463-467. doi: 10.7498/aps.52.463
    [18] 周世平, 瞿海, 廖红印. 高温超导混合配对态与磁通涡旋格子. 物理学报, 2002, 51(10): 2355-2361. doi: 10.7498/aps.51.2355
    [19] 曹天德, 黄清龙. 二分量高温超导机理. 物理学报, 2002, 51(7): 1600-1603. doi: 10.7498/aps.51.1600
    [20] 谭明秋, 陶向明. 高温超导体MgB2的电子结构研究. 物理学报, 2001, 50(6): 1193-1196. doi: 10.7498/aps.50.1193
计量
  • 文章访问数:  8324
  • PDF下载量:  451
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-26
  • 修回日期:  2018-10-10
  • 刊出日期:  2019-10-20

/

返回文章
返回