搜索

x
中国物理学会期刊

低温辐射计热结构设计与分析

CSTR: 32037.14.aps.68.20181880

Design and analysis of thermo-structure for cryogenic radiometer

CSTR: 32037.14.aps.68.20181880
PDF
HTML
导出引用
  • 低温辐射计利用低温超导下的电替代测量原理, 将光辐射计量溯源到可以精确测量的电参数测量, 是目前国际上光功率测量的最高基准. 本文实验研究了低温辐射计的热路结构, 系统分析了腔体组件与热链材料的热学特性对低温辐射计响应率和时间常数特性参数影响的机理. 在此基础上, 设计了由黑体腔、热链和支撑结构组成的热结构机械件, 搭建了低温辐射计特性参数测试系统, 并针对OHFC铜、6061铝、304不锈钢和聚酰亚胺四种不同热链材料测试了低温辐射计的时间常数和响应率, 时间常数跨度为23—506 s, 响应率跨度为 35.5—714.8 K/W. 结果表明, 在腔体组件确定的情况下, 通过调节热链的材料和结构, 可以实现对低温辐射计特性参数的调控. 实验结果对低温辐射计特性参数指标分配和指导下一代低温辐射计的研制具有一定参考价值.

     

    Absolute cryogenic radiometer is built based on a new theory of electrical-substitution measurement, which is for measuring the radiant power by using the equivalent electrical power and has recently served as a primary standard for radiant power measurements. This study aims to design and implement a cryogenic radiometers to measure the optical power in a range from 0.1\;\textμ\rmW to 2 mW, which can substitute for the imported products. Intensive experiments are performed to study the thermal circuit of cryogenic radiometer, and systematically analyze the influences of cavity assembly and heat link materials on the responsivity and thermal time constant of cryogenic radiometer. On this basis, the thermo-structure mechanical parts are developed, which are comprised of a blackbody cavity, heat link and heat sink. Both the heat sink and the blackbody cavity are made of OFHC copper that is plated with gold. All surfaces are highly polished and reflective to reduce any radiative effects. The absorptance of the cavity can reach up to 0.999995 at 633 nm. And then, a characteristic parameters’ test system of cryogenic radiometer is built. Through optimizing the temperature control system and improving the design of the heat sink, the standard deviation of the heat sink can be kept under 0.2 mK for 30 min. By using that test system, the responsivity and thermal time constant of cryogenic radiometer with four different kinds of heat link materials (OHFC copper, 6061 Al, SS304 stainless steel, and polyimide) are tested experimentally. The experimental results show that the responsivity and thermal time constant are 35.5 K/W and 23 s for OHFC copper, 318.9 K/W and 106 s for 6061 Al, 434.8 K/W and 297 s for SS304 stainless steel, 714.8 K/W and 506 s for polyimide. As the thermal conductivity of heat link material changes, the two parameters of responsivity and thermal time constant will simultaneously change significantly. The responsivity and thermal time constant are a pair of mutually constrained parameters, and temperature stability is an important parameter for designing the thermo-structure. After increasing the responsivity, it will not only significantly increase the measurement time and resource consumption, but also affect the temperature control stability, and hence limiting the measurement accuracy. All the test data indicate that the characteristic parameter of cryogenic radiometer can be adjusted by changing the material and structure of heat link. The obtained results will have a certain reference value for the index distribution of cryogenic radiometer characteristic parameters and designing the next generation of absolute cryogenic radiometers.

     

    目录

    /

    返回文章
    返回