搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Pancharatnam-Berry相位和动力学相位调控纵向光子自旋霍尔效应

刘金安 涂佳隆 卢志利 吴柏威 胡琦 马洪华 陈欢 易煦农

引用本文:
Citation:

基于Pancharatnam-Berry相位和动力学相位调控纵向光子自旋霍尔效应

刘金安, 涂佳隆, 卢志利, 吴柏威, 胡琦, 马洪华, 陈欢, 易煦农

Manipulating longitudinal photonic spin Hall effect based on dynamic and Pancharatnam-Berry phase

Liu Jin-An, Tu Jia-Long, Lu Zhi-Li, Wu Bai-Wei, Hu Qi, Ma Hong-Hua, Chen Huan, Yi Xu-Nong
PDF
HTML
导出引用
  • 提出了一种基于Pancharatnam-Berry相位和动力学相位操控纵向光子自旋霍尔效应的方法. 理论分析表明: 当光场通过一个由Pancharatnam-Berry相位透镜和动力学相位透镜构成的透镜组时, 透镜组会存在两个自旋相关的焦点. 首先, 当左旋和右旋圆偏振光通过微结构相位延迟为${\text{π}}$的Pancharatnam-Berry相位透镜时, 由于Pancharatnam-Berry相位的自旋相关性, 两个圆偏振分量会获得符号相反的Pancharatnam-Berry相位而导致其中一个被聚焦而另一个发散. 然后, 在Pancharatnam-Berry相位透镜后再插入普通透镜引入动力学相位调制, 由于动力学相位是自旋无关, 使得这一透镜组可以在合适的条件下使不同自旋态的光子分别聚焦于纵向上不同焦点处. 纵向自旋分裂由两透镜焦距及间距共同决定, 因此可以通过改变两个透镜的焦距及其间距获得任意的纵向自旋分裂值. 最后, 搭建了一套实验装置, 所得实验结果与理论结果一致.
    Photonic spin Hall effect is generally described as a spin-dependent splitting. Previous studies have focused on the transverse spin-dependent splitting of light field. In this work, a method of manipulating the longitudinal photonic spin Hall effect which is based on dynamic and Pancharatnam-Berry phase is proposed. The theoretical analysis demonstrates that the lens group consisting of a Pancharatnam-Berry phase lens and a dynamic lens has two spin-dependent foci. Firstly, because Pancharatnam-Berry phase is spin-dependent, the left- and right-handed circularly polarized component can respectively acquire a Pancharatnam-Berry phase with opposite sign when a linearly polarized light beam passes through the Pancharatnam-Berry phase lens with phase retardation ${\text{π}}$. It leads one circularly polarized component to be focused and the other diverged. This is essentially the spin-dependent splitting of light field in momentum space, which is caused by Pancharatnam-Berry phase. And then, an ordinary lens is inserted behind the Pancharatnam-Berry phase lens to introduce a dynamic phase modulation. Due to dynamic phase being spin-independent, the constructed lens group can focus the photons with different spin states at different focal points longitudinally under the appropriate conditions. In other words, the lens group has two spin-dependent focal points. The two focal points split the photons with different spin states in the longitudinal direction. The longitudinal spin-dependent splitting is dependent on the focal lengths of the two lens and the distance between the two lenses. By changing the three parameters, arbitrary longitudinal spin-dependent splitting can be obtained. Lastly, an experimental system is set up to verify the theoretical results. The relationship between the spin-dependent splitting and the distance between the two lenses is measured. By introducing a Glan laser polarizer and a quarter wave-plate, the circularly polarized chirality of the light field at the focal point is also measured. These experimental results are all in good agreement with the theoretical analyses. These results are helpful in understanding the physical origin of photonic spin Hall effect and developing novel photonic devices based on photonic spin Hall effect.
      通信作者: 易煦农, xnyi@szu.edu.cn
    • 基金项目: 大学生创新创业项目(批准号: 201810528011)、国家自然科学基金(批准号: 11547017)和湖北省教育厅科学研究项目(批准号: B2017162)资助的课题.
      Corresponding author: Yi Xu-Nong, xnyi@szu.edu.cn
    • Funds: Project supported by the Innovation and Entrepreneurship Training Program for College Students, China (Grant No. 201810528011), the National Natural Science Foundation of China (Grant No. 11547017), and the Foundation of Hubei Educational Committee, China (Grant No. B2017162).
    [1]

    Onoda M, Murakami S, Nagaosa N 2004 Phys. Rev. Lett. 93 083901Google Scholar

    [2]

    Hosten O, Kwiat P 2008 Science 319 787Google Scholar

    [3]

    Bliokh K Y, Niv A, Kleiner V, Hasman E 2008 Nature Photon. 2 748Google Scholar

    [4]

    Bliokh K Y, Bliokh Y P 2006 Phys. Rev. Lett. 96 073903Google Scholar

    [5]

    Luo H, Wen S, Shu W, Tang Z, Zou Y, Fan D 2009 Phys. Rev. A 80 043810Google Scholar

    [6]

    Qin Y, Li Y, He H, Gong Q 2009 Opt. Lett. 34 2551Google Scholar

    [7]

    Qin Y, Li Y, Feng X, Liu Z, He H, Xiao Y, Gong Q 2010 Opt. Express 18 16832Google Scholar

    [8]

    Luo H, Zhou X, Shu W, Wen S, Fan D 2011 Phys. Rev. A 84 043806Google Scholar

    [9]

    Wang H, Zhang X 2011 Phys. Rev. A 83 053820Google Scholar

    [10]

    Zhu W, She W 2015 Opt. Lett. 40 2961Google Scholar

    [11]

    Tang T, Li J, Zhang Y, Li C, Luo L 2016 Opt. Express 24 28113Google Scholar

    [12]

    Xiang Y, Jiang X, You Q, Guo J, Dai X 2017 Photon. Res. 5 467Google Scholar

    [13]

    Zhang W, Wu W, Chen S, Zhang J, Ling X, Shu W, Luo H, Wen S 2018 Photon. Res. 6 511Google Scholar

    [14]

    Zhou X, Xiao Z, Luo H, Wen S 2012 Phys. Rev. A 85 043809Google Scholar

    [15]

    Zhou X, Ling X, Luo H, Wen S 2012 Appl. Phys. Lett. 101 251602Google Scholar

    [16]

    Kang M, Chen J, Li S, Gu B, Li Y, Wang H 2011 Opt. Lett. 36 3942Google Scholar

    [17]

    Shitrit N, Yulevich I, Maguid E, Ozeri D, Veksler D, Kleiner V, Hasman E 2013 Science 340 724Google Scholar

    [18]

    Ling X, Zhou X, Yi X, Shu W, Liu Y, Chen S, Luo H, Wen S, Fan D 2015 Light: Sci. Appl. 4 e290Google Scholar

    [19]

    Shao Z, Zhu J, Chen Y, Zhang Y, Yu S 2018 Nature Commun. 9 926Google Scholar

    [20]

    万婷, 罗朝明, 闵力, 陈敏, 肖磊 2018 物理学报 67 064201Google Scholar

    Wan T, Luo Z M, Min L, Chen M, Xiao L 2018 Acta Phys. Sin. 67 064201Google Scholar

    [21]

    Khorasaninejad M, Chen W, Devlin R, Oh J, Zhu A, Capasso F 2016 Science 352 1190Google Scholar

    [22]

    Ke Y, Liu Y, Zhou J, Liu Y, Luo H, Wen S 2016 Appl. Phys. Lett. 108 101102Google Scholar

    [23]

    Shu W, Ke Y, Liu Y, Ling X, Luo H, Yin X 2016 Phys. Rev. A 93 013839Google Scholar

    [24]

    陈敏, 罗朝明, 万婷, 刘靖 2017 光学学报 37 0226002

    Chen M, Luo Z M, Wan T, Liu J 2017 Acta Opt. Sin. 37 0226002

    [25]

    徐兆鑫, 黄修章, 黄攀立, 艾余前, 张晨, 陈欢, 易煦农 2018 光子学报 47 0126002

    Xu Z X, Huang X Z, Huang P L, Ai Y Q, Zhang C, Chen H, Yi X N 2018 Acta Photon. Sin. 47 0126002

    [26]

    Marrucci L, Manzo C, Paparo D 2006 Phys. Rev. Lett. 96 163905Google Scholar

    [27]

    Yi X, Liu Y, Ling X, Zhou X, Ke Y, Luo H, Wen S, Fan D 2015 Phys. Rev. A 91 023801Google Scholar

    [28]

    Beresna M, Gecevičius M, Kazansky P G, Gertus T 2011 Appl. Phys. Lett. 98 201101Google Scholar

    [29]

    Beresna M, Gecevičius M, Kazansky P G 2011 Opt. Mater. Express 1 783Google Scholar

  • 图 1  (a) PB相位透镜的光轴分布示意图; (b)当线偏振光通过PB相位透镜与普通透镜构成的透镜组时, 不同自旋态光子的光路示意图; (c)实验装置示意图(GLP, 格兰激光偏振镜; PB lens, PB相位透镜; Lens, 普通透镜; QWP, 四分之一波片)

    Fig. 1.  (a) Schematic illustration of optical axis spatial distribution of the PB phase lens; (b) optical pathway diagram of photon with different spin states when a linearly polarized light beam passes through the lens group consisting of a PB phase lens and a ordinary lens; (c) diagram of experimental setup (GLP, Glan laser polarizer; PB lens, PB phase lens; Lens, ordinary lens, QWP, quarter-wave plate).

    图 2  透镜组的焦点位置及纵向自旋分裂与两透镜之间的距离$d$的关系曲线 (a1)—(a3)分别为当${f_{{\rm{PB}}}} = 200\;{\rm{mm}}$, ${f_{\rm{C}}} = 175\;{\rm{mm}}$时, 透镜组的左旋圆偏振光焦点位置、右旋圆偏振光焦点位置及纵向自旋分裂与两透镜之间的距离$d$的关系曲线, (a3)中的实线为理论计算结果, 方形离散点为实验测得的结果; (b1)—(b3)为${f_{{\rm{PB}}}} = 200\;{\rm{mm}}$, ${f_{\rm{C}}} = 100\;{\rm{mm}}$时对应的结果

    Fig. 2.  Focus position of the lens group and longitudinal spin splitting change with the distance of the PB lens and the ordinary lens, when (a1)−(a3) ${f_{{\rm{PB}}}} = 200\;{\rm{mm}}$, ${f_{\rm{C}}} = 175\;{\rm{mm}}$; (b1)−(b3) the corresponding case, when ${f_{{\rm{PB}}}} = 200\;{\rm{mm}}$, ${f_{\rm{C}}} = 100$mm

    图 3  透镜组焦点处光场的归一化斯托克斯${s_3}$参数 (a)焦点${F_1}$处光场的斯托克斯${s_3}$参数; (b)焦点${F_2}$处光场的斯托克斯${s_3}$参数

    Fig. 3.  Normalized Stokes parameter ${s_3}$ of the optical field at the focus: (a) The Stokes parameter ${s_3}$ of the optical field at the focus ${F_1}$; (b) the Stokes parameter ${s_3}$ of the optical field at the focus ${F_2}$.

  • [1]

    Onoda M, Murakami S, Nagaosa N 2004 Phys. Rev. Lett. 93 083901Google Scholar

    [2]

    Hosten O, Kwiat P 2008 Science 319 787Google Scholar

    [3]

    Bliokh K Y, Niv A, Kleiner V, Hasman E 2008 Nature Photon. 2 748Google Scholar

    [4]

    Bliokh K Y, Bliokh Y P 2006 Phys. Rev. Lett. 96 073903Google Scholar

    [5]

    Luo H, Wen S, Shu W, Tang Z, Zou Y, Fan D 2009 Phys. Rev. A 80 043810Google Scholar

    [6]

    Qin Y, Li Y, He H, Gong Q 2009 Opt. Lett. 34 2551Google Scholar

    [7]

    Qin Y, Li Y, Feng X, Liu Z, He H, Xiao Y, Gong Q 2010 Opt. Express 18 16832Google Scholar

    [8]

    Luo H, Zhou X, Shu W, Wen S, Fan D 2011 Phys. Rev. A 84 043806Google Scholar

    [9]

    Wang H, Zhang X 2011 Phys. Rev. A 83 053820Google Scholar

    [10]

    Zhu W, She W 2015 Opt. Lett. 40 2961Google Scholar

    [11]

    Tang T, Li J, Zhang Y, Li C, Luo L 2016 Opt. Express 24 28113Google Scholar

    [12]

    Xiang Y, Jiang X, You Q, Guo J, Dai X 2017 Photon. Res. 5 467Google Scholar

    [13]

    Zhang W, Wu W, Chen S, Zhang J, Ling X, Shu W, Luo H, Wen S 2018 Photon. Res. 6 511Google Scholar

    [14]

    Zhou X, Xiao Z, Luo H, Wen S 2012 Phys. Rev. A 85 043809Google Scholar

    [15]

    Zhou X, Ling X, Luo H, Wen S 2012 Appl. Phys. Lett. 101 251602Google Scholar

    [16]

    Kang M, Chen J, Li S, Gu B, Li Y, Wang H 2011 Opt. Lett. 36 3942Google Scholar

    [17]

    Shitrit N, Yulevich I, Maguid E, Ozeri D, Veksler D, Kleiner V, Hasman E 2013 Science 340 724Google Scholar

    [18]

    Ling X, Zhou X, Yi X, Shu W, Liu Y, Chen S, Luo H, Wen S, Fan D 2015 Light: Sci. Appl. 4 e290Google Scholar

    [19]

    Shao Z, Zhu J, Chen Y, Zhang Y, Yu S 2018 Nature Commun. 9 926Google Scholar

    [20]

    万婷, 罗朝明, 闵力, 陈敏, 肖磊 2018 物理学报 67 064201Google Scholar

    Wan T, Luo Z M, Min L, Chen M, Xiao L 2018 Acta Phys. Sin. 67 064201Google Scholar

    [21]

    Khorasaninejad M, Chen W, Devlin R, Oh J, Zhu A, Capasso F 2016 Science 352 1190Google Scholar

    [22]

    Ke Y, Liu Y, Zhou J, Liu Y, Luo H, Wen S 2016 Appl. Phys. Lett. 108 101102Google Scholar

    [23]

    Shu W, Ke Y, Liu Y, Ling X, Luo H, Yin X 2016 Phys. Rev. A 93 013839Google Scholar

    [24]

    陈敏, 罗朝明, 万婷, 刘靖 2017 光学学报 37 0226002

    Chen M, Luo Z M, Wan T, Liu J 2017 Acta Opt. Sin. 37 0226002

    [25]

    徐兆鑫, 黄修章, 黄攀立, 艾余前, 张晨, 陈欢, 易煦农 2018 光子学报 47 0126002

    Xu Z X, Huang X Z, Huang P L, Ai Y Q, Zhang C, Chen H, Yi X N 2018 Acta Photon. Sin. 47 0126002

    [26]

    Marrucci L, Manzo C, Paparo D 2006 Phys. Rev. Lett. 96 163905Google Scholar

    [27]

    Yi X, Liu Y, Ling X, Zhou X, Ke Y, Luo H, Wen S, Fan D 2015 Phys. Rev. A 91 023801Google Scholar

    [28]

    Beresna M, Gecevičius M, Kazansky P G, Gertus T 2011 Appl. Phys. Lett. 98 201101Google Scholar

    [29]

    Beresna M, Gecevičius M, Kazansky P G 2011 Opt. Mater. Express 1 783Google Scholar

  • [1] 刘香莲, 李凯宙, 李晓琼, 张强. 二维电介质光子晶体中量子自旋与谷霍尔效应共存的研究. 物理学报, 2023, 72(7): 074205. doi: 10.7498/aps.72.20221814
    [2] 李乾阳, 袁帅杰, 杨锦, 王勇, 马祖海, 陈宇, 周新星. 块状和超薄磁性材料中巨大且可调控的面内自旋角位移. 物理学报, 2023, 72(1): 014201. doi: 10.7498/aps.72.20221643
    [3] 姜在超, 宫正, 钟芸襄, 崔彬, 邹斌, 杨玉平. 基于几何相位的太赫兹编码超表面反射器研制与测试. 物理学报, 2023, 72(24): 248707. doi: 10.7498/aps.72.20230989
    [4] 李乾阳, 袁帅杰, 杨锦, 王勇, 马祖海, 陈宇, 周新星. 块状和超薄磁性材料中巨大且可调控的面内自旋角位移. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20221643
    [5] 高喜, 唐李光. 基于双层超表面的宽带、高效透射型轨道角动量发生器. 物理学报, 2021, 70(3): 038101. doi: 10.7498/aps.70.20200975
    [6] 谢智强, 贺炎亮, 王佩佩, 苏明样, 陈学钰, 杨博, 刘俊敏, 周新星, 李瑛, 陈书青, 范滇元. 基于Pancharatnam-Berry相位超表面的二维光学边缘检测. 物理学报, 2020, 69(1): 014101. doi: 10.7498/aps.69.20191181
    [7] 万婷, 罗朝明, 闵力, 陈敏, 肖磊. 基于合金介电常数的可控特性增强光子自旋霍尔效应. 物理学报, 2018, 67(6): 064201. doi: 10.7498/aps.67.20171824
    [8] 陈欢, 凌晓辉, 何武光, 李钱光, 易煦农. 基于Pancharatnam-Berry相位调控产生贝塞尔光束. 物理学报, 2017, 66(4): 044203. doi: 10.7498/aps.66.044203
    [9] 王莉岑, 邱晓东, 张志友, 石瑞英. 磁光克尔效应中的光子自旋分裂. 物理学报, 2015, 64(17): 174202. doi: 10.7498/aps.64.174202
    [10] 汪之国, 龙兴武, 王飞, 张斌. 激光陀螺本征模偏振态与磁敏感特性的理论研究. 物理学报, 2013, 62(5): 054205. doi: 10.7498/aps.62.054205
    [11] 罗幸, 周新星, 罗海陆, 文双春. 光自旋霍尔效应中的交叉偏振特性研究. 物理学报, 2012, 61(19): 194202. doi: 10.7498/aps.61.194202
    [12] 左林, 杨爱英, 周大伟, 孙雨南. 非线性偏振旋转中偏振控制器方位角的研究. 物理学报, 2012, 61(5): 054211. doi: 10.7498/aps.61.054211
    [13] 王建飞, 王潇, 罗洪, 孟洲. 基于法拉第旋镜的干涉型光纤传感系统偏振相位噪声特性研究. 物理学报, 2012, 61(15): 150701. doi: 10.7498/aps.61.150701
    [14] 王志明. GaAs自旋注入及巨霍尔效应的研究. 物理学报, 2011, 60(7): 077203. doi: 10.7498/aps.60.077203
    [15] 马娟, 罗海陆, 文双春. 多层介质中的光自旋霍尔效应研究. 物理学报, 2011, 60(9): 094205. doi: 10.7498/aps.60.094205
    [16] 贺雪鹏, 刘院省, 刘世炳. 超快激光抽运-探测中探针光时间延迟量的 实时测量原理与光学设计. 物理学报, 2011, 60(2): 024212. doi: 10.7498/aps.60.024212
    [17] 黄翀, 陈海清, 廖兆曙, 赵爽. 高量级光衰减时对线偏振片组衰光系数的研究. 物理学报, 2010, 59(3): 1756-1761. doi: 10.7498/aps.59.1756
    [18] 葛琳, 季沛勇. 等离子体波背景下的光子Berry相位. 物理学报, 2009, 58(1): 347-353. doi: 10.7498/aps.58.347
    [19] 马瑞琼, 李永放, 时 坚. 相干瞬态的量子干涉效应和Berry相位. 物理学报, 2008, 57(7): 4083-4090. doi: 10.7498/aps.57.4083
    [20] 郜 鹏, 姚保利, 韩俊鹤, 陈利菊, 王英利, 雷 铭. 菌紫质同线偏振全息记录时再现光偏振方向对衍射效率的调制. 物理学报, 2008, 57(5): 2952-2958. doi: 10.7498/aps.57.2952
计量
  • 文章访问数:  11576
  • PDF下载量:  228
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-11
  • 修回日期:  2018-12-14
  • 上网日期:  2019-03-01
  • 刊出日期:  2019-03-20

/

返回文章
返回