搜索

x
中国物理学会期刊

复杂大气背景下机载通信终端与无人机目标之间的激光传输特性研究

CSTR: 32037.14.aps.68.20182052

Laser propagation transmission properties characteristics between airborne communication terminal and unmanned aerial vehicle target in complex atmospheric background

CSTR: 32037.14.aps.68.20182052
PDF
HTML
导出引用
  • 云层、气溶胶和大气分子是大气环境的主要组成部分. 本文基于逐次散射法求解辐射传输方程, 建立了复杂大气背景下机载无线光通信终端与地空无人机目标之间的激光传输模型. 考虑真实大气背景中卷云、大气分子和气溶胶存在的情况下, 数值计算了1.55 μm激光经机载通信终端发出后通过大气背景的直接传输和一阶散射传输后接收功率随无人机目标高度的变化关系, 分析了飞机在云上、云中和云下以及卷云冰晶粒子有效半径、飞机与无人机之间的水平距离对接收激光信号传输功率的影响. 数值结果表明: 激光通过卷云传输的功率很大程度上取决于飞机在云上、云下或云中的位置; 飞机与无人机目标之间的水平距离和卷云冰晶粒子的有效半径对激光直接传输和一阶散射传输影响较大; 与云上大气相比, 云下的大气分子和气溶胶对激光有较大的衰减. 本文工作可为进一步开展地空链路上复杂大气背景对机载与低空无人机目标激光通信实验、无人机编队、指挥和组网技术的研究提供理论支撑.

     

    Clouds, aerosols and atmospheric molecules are major components of the atmosphere. In the fields of atmospheric physics such as target detection, wireless optical communication and remote sensing, these atmospheric components have a strong attenuation effect on laser transmission. Based on the successive scattering method for solving the radiative transfer equation, the laser transmission model between airborne wireless optical communication terminal and ground-to-air unmanned aerial vehicle (UAV) target in complex atmospheric background is established in this paper. Considering the fact that cirrus cloud, atmospheric molecules and aerosols exist in the real atmospheric background, the variations of direct transmission power, first-order scattering transmission power of 1.55 μm laser emitted by the airborne wireless optical communication terminal with UAV target height are calculated numerically under complex atmospheric background. The effects of the aircraft located at different locations, effective radius of ice crystal particles in cirrus cloud, as well as the horizontal distance between the aircraft and UAV target on received laser transmission power are also analyzed. In the first three examples (i.e., aircraft is above, below, and inside cirrus cloud), laser direct transmission power (LDTP) is much larger than first-order scattering transmission power (FSTP); when the UAV target rises into the cloud, the FSTP is significantly enhanced as a result of the effect of diffraction light. The fourth example is for calculating the variations of LDTP and FSTP with UAV target height for different effective radii of ice crystals. The results show that the LDTP decreases with the increase of effective radius, whereas the FSTP presents an opposite scenario. The fifth example is for calculating the variations of LDTP and FSTP with UAV target height for different horizontal distances. The results show that the LDTP and FSTP decrease with the increase of the horizontal distance, which is obviously realistic. In summary, it is concluded that the laser transmitted power through cirrus clouds is strongly dependent on aircraft position: above, below, or inside cirrus cloud; the horizontal distance between the aircraft and UVA target, and effective radii of ice crystals have great influences on LDTP and FSTP. Compared with the atmosphere above the clouds, the molecules and aerosols below the clouds make the laser power have a strong attenuation. The results given in this paper provide theoretical support for further studying the laser communication experiment in ground-to-air links, UAV formation, command and networking technology in complex atmospheric background.

     

    目录

    /

    返回文章
    返回