搜索

x
中国物理学会期刊

钙钛矿薄膜气相制备的晶粒尺寸优化及高效光伏转换

CSTR: 32037.14.aps.68.20182221

Optimization of grain size to achieve high-performance perovskite solar cells in vapor deposition

CSTR: 32037.14.aps.68.20182221
PDF
HTML
导出引用
  • 钙钛矿薄膜的气相制备是一种极具潜力的工业化生产工艺, 但薄膜的质量控制目前远落后于溶液制备法. 本文通过建立PbI2薄膜向钙钛矿薄膜完全转化过程中反应时间、晶粒尺寸与温度的关系, 实现了薄膜的质量优化及大面积钙钛矿薄膜的制备, 将薄膜的平均晶粒粒径从0.42 \textμm优化到0.81 \textμm. 基于空间电荷限制电流模型对缺陷密度的研究显示, 钙钛矿薄膜的缺陷密度由5.90 × 1016 cm–3降低到2.66 × 1016 cm–3. 光伏器件(FTO/TiO2/C60/MAPbI3/spiro-OMeTAD/Au结构)测试显示, 面积为0.045 cm2器件的平均光电转换效率从14.00%提升到17.42%, 最佳光电转换效率达到17.80%, 迟滞因子减小至4.04%. 同时, 基于180 ℃制备的1 cm2器件的光电转换效率达到13.17%.

     

    Organometal halide perovskite is one of the most promising materials for high efficient thin-film solar cell. Solution fabrication process shows that the recorded power conversion efficiency (PCE) is 23.7%, however, large scale fabrication suffers the inevitable toxic solvent, preventing it from implementing the green commercialization. As one of the matured large-scale fabrication techniques, the vapor deposition is recently found to promise the green fabrication of perovskite thin film without toxic solvent. However, the PCE based on vapor deposition is considerably lower than that based on solution fabrication because of ineffective regulation methods of the perovskite films. So, there is intensive requirement for optimizing the growth of perovskite in vapor deposition for improving PCE, especially, developing a kind of quality regulation method of the perovskite films.
    In this study, we provide a method of adjusting grain size in vapor deposition method. The grain size optimization of MAPbI3 films is realized by simply modulating the reaction temperature between PbI2 films and MAI vapor. We set the reaction temperature to be 140 ℃, 160 ℃, 180 ℃ and 200 ℃ separately and establish the relationship between reaction time and grain size during the complete conversion of PbI2 film into MAPbI3 film. We find that the average grain size of the film increases first with growth temperature increasing from 140 ℃ to 180 ℃ and then decrease at 200 ℃, giving an average grain size of 0.81 \textμm and a largest grain size of about 2 \textμm at 180 ℃. The defect density of perovskite film is deduced from the space charge limited current model, showing that it decreases from 5.90 × 1016 cm–3 at 140 ℃ to 2.66 × 1016 cm–3 at 180 ℃. Photovoltaic devices with structure FTO/TiO2/C60/MAPbI3/spiro-OMeTAD/Au are fabricated to demonstrate the performance. It is found that the devices with an active area of 0.045 cm2 show that with the increase of grain size, the average PCE increases from 14.00% to 17.42%, and the best device shows that its PCE is 17.80% with 4.04% hysteresis index. To show the possibility of scaling up, we fabricate a uniform perovskite thin film with an area of about 72 cm2, and a device with an active area of 1 cm2, which gives a PCE of 13.17% in reverse scan. In summary, our research provides a method of regulating the grain size for the vapor deposition, which can improve device performance by reducing the trap density in perovskite film for suppressing the carrier recombination in grain boundary. Meanwhile, we prepare high performance devices and large area thin films, showing their potential in large area device fabrication and applications.

     

    目录

    /

    返回文章
    返回