搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应力调控下二维硒化锗五种同分异构体的第一性原理研究

左博敏 袁健美 冯志 毛宇亮

引用本文:
Citation:

应力调控下二维硒化锗五种同分异构体的第一性原理研究

左博敏, 袁健美, 冯志, 毛宇亮

First-principles study of five isomers of two-dimensional GeSe under in-plane strain

Zuo Bo-Min, Yuan Jian-Mei, Feng Zhi, Mao Yu-Liang
PDF
HTML
导出引用
  • 采用第一性原理计算方法, 研究了二维单层硒化锗(GeSe)的5种同分异构体结构的稳定性和在应力调控下的电子性质变化规律. 计算结果表明: 5种同分异构体结构都具有热力学稳定性; α-GeSe是直接带隙半导体, β-GeSe, γ-GeSe, δ-GeSe和ε-GeSe都是间接带隙半导体. α-GeSe在应力调控下出现了直接到间接带隙的转变和半导体到金属性质的转变. β-GeSe和γ-GeSe在应力的作用下具有可调节的间接带隙范围. 当沿δ-GeSe双轴方向施加压缩应力为1%和4%时, δ-GeSe的能带从间接带隙转变成直接带隙. 通过沿ε-GeSe的扶手椅形方向施加10%的拉伸应变, 出现了从间接带隙到直接带隙的转变; 继续增加拉伸应变到20%, 能带结构一直保持直接带隙的特征, 其可调范围为1.21—1.44 eV. 沿δ-GeSe双轴方向施加10%拉伸应变时, 也出现了从间接带隙到直接带隙的转变; 该直接带隙在双轴拉伸应变增加到19%前一直保持, 可调范围为0.61—1.19 eV.
    Using first-principles calculations, we investigate the stability and electronic properties of five isomers of two-dimensional (2D) GeSe monolayer under in-plane strain. Our calculated results show that the five isomers of GeSe monolayer are all stable. It is found that the α-GeSe has a direct band gap, while each of the β-GeSe, γ-GeSe, δ-GeSe and ε-GeSe possesses an indirect band gap. By applying compressive or tensile uniaxial and biaxial strain to the five GeSe isomers, the indirect-to-direct transition in band gap is found. In the α-GeSe, the changes from indirect-to-direct and semiconducting-to-metallic are both found under an applied strain. In the 2D β-GeSe and γ-GeSe, an adjustable range of indirect band gap under strain is found. Moreover, a direct band gap in the δ-GeSe is found separately under the biaxial compression strain of σxy = –2% and σxy = –4%. By applying a tensile strain of 10% along the armchair direction in ε-GeSe, a transition from an indirect to direct band gap occurs. When the tensile strain is continuously increased to 20%, the band structure of ε-GeSe maintains direct character. This direct band gap can be tuned from 1.21 eV to 1.44 eV. When 10% tensile strain is applied along the biaxial direction, the transition in band gap from indirect-to-direct also occurs. Our results indicate that the direct band gap can be tuned from 0.61 eV to 1.19 eV when the tensile strain is increased from 10% to 19% in ε-GeSe.
      通信作者: 袁健美, yuanjm@xtu.edu.cn ; 毛宇亮, ylmao@xtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11471280)、湖南省教育厅重点项目(批准号: 17A207)和湖南省自然科学基金(批准号: 2018JJ2130)资助的课题.
      Corresponding author: Yuan Jian-Mei, yuanjm@xtu.edu.cn ; Mao Yu-Liang, ylmao@xtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11471280), the Research Foundation of Education Bureau of Hunan Province, China (Grant No. 17A207), and the Natural Science Foundation of Hunan Province, China (Grant No. 2018JJ2130).
    [1]

    Zhao Y, Chen Y, Zhang Y H, Liu S F 2017 Mater. Chem. Phys. 189 215Google Scholar

    [2]

    Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A, Colombo L 2014 Nat. Nanotech. 9 768Google Scholar

    [3]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotech. 7 699Google Scholar

    [4]

    Ando T, Fowler A B, Stern F 1982 Rev. Mod. Phys. 54 437Google Scholar

    [5]

    Schedin F, Geim A K, Morozov S V, Hill E W, Blake P, Katsnelson M I, Novoselov K S 2007 Nat. Mater. 6 652Google Scholar

    [6]

    Wang T H, Zhu Y F, Jiang Q 2013 J. Phys. Chem. C 117 12873Google Scholar

    [7]

    Liu L, Feng Y P, Shen Z X 2003 Phys. Rev. B 68 104102Google Scholar

    [8]

    Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902Google Scholar

    [9]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [10]

    Splendiani A, Sun L, Zhang Y B, Li T S, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271Google Scholar

    [11]

    Peng X H, Wei Q, Copple A 2014 Phys. Rev. B 90 085402Google Scholar

    [12]

    Liu H, Neal A T, Zhu Z, Luo Z, Xu X F, Tománek D, Ye P D 2014 ACS Nano. 8 4033Google Scholar

    [13]

    Jain A, McGaughey A J 2015 Sci. Rep 5 8501Google Scholar

    [14]

    Liang L B, Wang J, Lin W Z, Sumpter B G, Meunier V, Pan M 2014 Nano Lett. 14 6400Google Scholar

    [15]

    Kou L Z, Chen C F, Smith S C 2015 Phys. Chem. Lett. 6 2794Google Scholar

    [16]

    Reich E S 2014 Nature 506 19Google Scholar

    [17]

    Singh A K, Hennig R G 2014 Appl. Phys. Lett. 105 042103Google Scholar

    [18]

    Huang L, Wu F G, Li J B 2016 J. Chem. Phys. 144 114708Google Scholar

    [19]

    Zhang S L, Wang N, Liu S G, Huang S P, Zhou W H, Cai B, Xie M Q, Yang Q, Chen X P, Zeng H B 2016 Nanotechnology 27 274001Google Scholar

    [20]

    Wiedemeier H, Georg H, von Schnering G 1978 Z. Krist-Cryst. Mater. 148 295

    [21]

    Vaughn II D D, Patel R J, Hickner M A, Schaak R E 2010 J. Am. Chem. Soc. 132 15170Google Scholar

    [22]

    de Oliveira I S S, Longuinhos R 2016 Phys. Rev. B 94 035440Google Scholar

    [23]

    Bosse J L, Grishin I, Gyu Choi Y, Cheong B K, Lee S, Kolosov O V, Huey B D 2014 Appl. Phys. Lett. 104 053109Google Scholar

    [24]

    Zhang X Y, Shen J W, Lin S Q, Li J, Chen Z W, Li W, Pei Y Z 2016 J. Materiomics 2 331Google Scholar

    [25]

    Xue D J, Liu S C, Dai C M, Chen S Y, He C, Zhao L, Hu J S, Wan L J 2017 J. Am. Chem. Soc. 139 958Google Scholar

    [26]

    Liu S C, Mi Y, Xue D J, Chen Y X, He C, Liu X F, Hu J S, Wan L J 2017 Adv. Electron. Mater. 3 1700141Google Scholar

    [27]

    Sannyal A, Zhang Z Q, Gao X F, Jang J 2018 Comp. Mater. Sci. 154 204Google Scholar

    [28]

    Gomes L C, Carvalho A 2015 Physics 9 2

    [29]

    Fei R X, Li W B, Li J, Y L 2015 Appl. Phys. Lett. 107 237

    [30]

    Zhang S L, Liu S G, Huang S P, Cai B, Xie M Q, Qu L H, Zou Y S, Hu Z Y, Xu X C, Zeng H 2015 Sci. China: Mater. 58 929

    [31]

    Zhao H Q, Mao Y L, Mao X, Shi X, Xu C S, Wang C X, Zhang S M, Zhou D H 2018 Adv. Funct. Mater. 28 1704855Google Scholar

    [32]

    von Rohr F O, Ji H, Cevallos F A, Gao T, Ong N P, Cava R J 2017 J. Am. Chem. Soc. 139 2771Google Scholar

    [33]

    Gomes L C, Trevisanutto P E, Carvalho A, Rodin A S, Neto A C 2016 Phys. Rev. B 94 155428Google Scholar

    [34]

    Mao Y L, Xu C S, Yuan J M, Zhao H Q 2018 Phys. Chem. Chem. Phys. 20 6929Google Scholar

    [35]

    Mao Y L, Long L B, Yuan J M, Zhong J X, Zhao H Q 2018 Chem. Phys. Lett. 706 501Google Scholar

    [36]

    Ersan F, Arkin H, Aktürk E 2017 RSC Adv. 7 37815Google Scholar

    [37]

    Xu Y F, Zhang H, Shao H Z, Ni G, Li J, Lu H L, Zhang R J, Peng B, Zhu Y Y, Zhu H Y, Soukoulis C M 2017 Phys. Rev. B 96 245421Google Scholar

    [38]

    Hu Y H, Zhang S L, Sun S F, Xie M Q, Cai B, Zeng H B 2015 Appl. Phys. Lett. 107 122107Google Scholar

    [39]

    Ong Z Y, Cai Y Q, Zhang G, Zhang Y W 2014 J. Phys. Chem. C 118 25272Google Scholar

    [40]

    Ni Z H, Yu T, Lu Y H, Wang Y Y, Feng Y P, Shen Z X 2008 ACS Nano 2 2301Google Scholar

    [41]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [42]

    Hafner J 2008 J. Comp. Chem. 29 2044Google Scholar

    [43]

    Segall M D, Lindan P J, Probert M A, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condensed Mat. 14 2717Google Scholar

    [44]

    Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I, Refson K, Payne M C 2005 Z. Krist-Cryst Mater. 220 567

    [45]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [46]

    White J A, Bird D M 1994 Phys. Rev. B 50 4954Google Scholar

    [47]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207Google Scholar

    [48]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [49]

    Mao Y L, Ben J, Yuan J M,Zhong J X 2018 Chem. Phys. Lett. 705 12Google Scholar

    [50]

    鲁源坤 2010 硕士学位论文 (山西: 太原科技大学)

    Lu Y K 2010 M. S. Thesis (Taiyuan: University of Science & Technology) (in Chinese)

  • 图 1  单层GeSe的5种同分异构弛豫后结构的俯视图和侧视图(图中ab表示晶格常数) (a) α-GeSe; (b) β-GeSe; (c) γ-GeSe; (d) δ-GeSe; (e) ε-GeSe

    Fig. 1.  Top view and side views of relaxed structures of five isomers of GeSe monolayer (in the figures, a and b denote the lattice constants, respectively): (a) α-GeSe; (b) β-GeSe; (c) γ-GeSe; (d) δ-GeSe; (e) ε-GeSe.

    图 2  5种GeSe单层同分异构体的吸收系数

    Fig. 2.  Absorption coefficients for five isomers in GeSe monolayer.

    图 3  带隙随平面内应变的变化图(方块表示沿扶手椅(σx)方向的应变, 圆圈表示沿锯齿形(σy)方向的应变, 三角形代表双轴(σxy)应变, 实心和空心符号分别表示间接和直接带隙)

    Fig. 3.  Variation of band gap along with the applied in-plane strain (The square represents the strain along armchair (σx) direction, while the circle represents the strain along zigzag (σy) direction, the triangle represents the bi-axial (σxy) strain, the solid and hollow symbols denote the indirect and direct band gap, respectively)

    图 S1  单层α-GeSe在应变调控下能带结构 (a) σ = 0; (b) σx = 2%; (c) σx = 7%; (d) σy = –8%; (e) σy = –1%; (f) σy = 8%; (g) σxy = –1%; (h) σxy = –6%; (i) σxy = 8%

    Fig. S1.  Band structures of α-GeSe monolayer under applied strains: (a) σ = 0; (b) σx = 2%; (c) σx = 7%; (d) σy = –8%; (e) σy = –1%; (f) σy = 8%; (g) σxy = –1%; (h) σxy = –6%; (i) σxy = 8%.

    图 4  应变调控下ε-GeSe单层的能带结构 (σx, σyσxy分别表示沿扶手椅形、锯齿形和双轴方向的应变箭头表示导带最小值 (CBM)指向价带最大值 (VBM)的方向) (a) σ = 0 (图中a表示ε-GeSe的导带最小值, b表示与a相同路径点的价带点, c是ε-GeSe的价带最大值, d是与c的相同路径点的导带点); (b) σx = 10%; (c) σx = 20%; (d) σy = 10%; (e) σy = 20%; (f) σxy = 10%; (g) σxy = 20%

    Fig. 4.  Band structures of ε-GeSe monolayer under applied strains (σx, σy, σxy represent the strains along the armchair, zigzag and biaxial directions, respectively. The arrow represents the direction from the conduction band minimum (CBM) to the valence band maximum (VBM)): (a) σ = 0 (in the figure, a represents the conduction band minimum of ε-GeSe, b represents the valence band point corresponding to the same path point of a, c is the valence band maximum of ε-GeSe, d is the conduction band point corresponding to the same path point of c); (b) σx = 10%; (c) σx = 20%; (d) σy = 10%; (e) σy = 20%; (f) σxy = 10%; (g) σxy = 20%.

    图 S2  ε-GeSe单层施加20%拉伸应变下优化后的结构 (a) 扶手椅方向; (b) 锯齿形方向; (c) 双轴方向

    Fig. S2.  Optimized structures of ε-GeSe monolayer under 20% tensile strain, respectively: (a) Armchair direction; (b) zigzag direction; (c) biaxial direction.

    图 5  单层ε-GeSe部分电荷密度的等值面 ((a), (b), (c), (d)分别对应于图4(a)a, b, cd所标注的点)

    Fig. 5.  Isosurfaces of partial charge densities of monolayer ε-GeSe ((a), (b), (c), (d) are corresponding points to a, b, c and d in Fig. 4(a), respectively).

    表 2  5种GeSe同分异构体结构的振动频率计算结果 (E0代表零点能, Ef/i代表虚拟频率, Ef/i/E0为虚拟频率占据零点能的比例)

    Table 2.  Calculated results of vibration frequencies of five isomers of GeSe (E0 represents zero energy, Ef/i represents virtual frequency, Ef/i/E0 denotes virtual frequency occupies the proportion of zero energy).

    α-GeSe β-GeSe γ-GeSe δ-GeSe ε-GeSe
    E0 73.88 39.55 77.92 151.22 179.68
    Ef/i/meV 0.037 0.016 0.041 0.077 0.664
    Ef/i/E0 0.05% 0.04% 0.05% 0.05% 0.03%
    下载: 导出CSV

    表 1  弛豫后单层GeSe 5种同分异构体的结构参数 ( ab分别是晶格常数, h为GeSe的翘曲高度, Eb是相对于单个原子之间的结合能, Eg为基本带隙)

    Table 1.  Relaxed structural parameters of five isomers of GeSe monolayer (a and b are the lattice constants, respectively. h is the buckling height of GeSe; Eb is the bind energy per atom; Eg is the fundamental band gap).

    α-GeSe β-GeSe γ-GeSe δ-GeSe ε-GeSe
    a 4.27 3.68 3.67 5.80 6.85
    b 3.98 3.68 5.89 5.84 6.43
    h 2.52 1.45 1.76 2.52 1.72
    |Eb|/eV·atom–1 4.14 4.12 4.11 4.13 4.08
    Eg/eV 1.14 2.30 1.77 1.58 1.78
    下载: 导出CSV

    表 3  ε-GeSe沿扶手椅形(σx)、锯齿形(σy)和双轴(σxy)方向平面应变优化后的几何参数及能隙(负应变表示压缩应变, 正应变表示拉伸应变; d1, d2d3 (如图1(e)所示)分别表示Ge和Se原子之间的距离, θ1表示θ (Ge-Se-Ge)的键角, θ2表示θ (Se-Ge-Se)的键角; Eg (eV)表示对应应变下的带隙, (ind.)表示间接带隙,(dir.)表示直接带隙)

    Table 3.  Summary of the optimized geometric structures and energy gaps for ε-GeSe under in-plane strains along the armchair (σx), zigzag (σy) and biaxial (σxy) directions (Negative values of strain denote compress strains, while positive values denote tensile strains. d1, d2 and d3 (as shown in Fig. 1(e)) represent the distance between Ge and Se atoms, respectively. θ1 represents the θ (Ge-Se-Ge) bond angle. θ2 represents the θ (Se-Ge-Se) bond angle. Eg (eV) is the band gap under the corresponding strain,(ind.)is the indirect band gap, (dir.) is the direct band gap)

    Strain/% d1 d2 d3 θ1 θ2 Eg/eV
    σx 2.68 2.51 2.60 85.6 86.7 1.56 (ind.)
    –10 σy 2.60 2.58 2.56 98.2 85.1 1.41 (ind.)
    σxy 2.60 2.52 2.52 89.6 77.8 0.85 (ind.)
    σx 2.67 2.51 2.60 87.4 87.2 1.61 (ind.)
    –8 σy 2.61 2.57 2.57 97.1 85.8 1.55 (ind.)
    σxy 2.60 2.52 2.54 90.2 80.3 1.32 (ind.)
    σx 2.67 2.52 2.60 89.1 87.8 1.66 (ind.)
    –6 σy 2.61 2.56 2.58 96.3 86.6 1.67 (ind.)
    σxy 2.61 2.52 2.56 90.8 82.8 1.71 (ind.)
    σx 2.66 2.52 2.60 90.9 88.3 1.72 (ind.)
    –4 σy 2.62 2.55 2.59 95.5 87.5 1.77 (ind.)
    σxy 2.62 2.53 2.57 91.7 85.5 1.90 (ind.)
    σx 2.65 2.53 2.60 92.4 88.8 1.75 (ind.)
    –2 σy 2.63 2.55 2.59 94.8 88.4 1.84 (ind.)
    σxy 2.64 2.53 2.59 92.7 87.4 1.89 (ind.)
    0 2.65 2.54 2.60 94.1 89.3 1.78 (ind.)
    σx 2.65 2.55 2.60 95.8 89.7 1.75 (ind.)
    2 σy 2.67 2.54 2.60 93.3 90.5 1.62 (ind.)
    σxy 2.67 2.55 2.60 95.8 91.3 1.62 (ind.)
    σx 2.64 2.56 2.60 97.2 90.2 1.66 (ind.)
    4 σy 2.69 2.54 2.60 93.2 91.6 1.48 (ind.)
    σxy 2.68 2.56 2.60 98.0 92.6 1.50 (ind.)
    σx 2.63 2.57 2.61 99.0 90.2 1.60 (ind.)
    6 σy 2.71 2.54 2.60 92.8 92.8 1.35 (ind.)
    σxy 2.70 2.57 2.60 100.2 93.7 1.40 (ind.)
    σx 2.63 2.59 2.61 100.8 90.4 1.51 (ind.)
    8 σy 2.74 2.54 2.60 92.8 94.1 1.24 (ind.)
    σxy 2.71 2.59 2.60 102.6 94.9 1.30 (ind.)
    σx 2.62 2.60 2.61 103.5 89.9 1.44 (dir.)
    10 σy 2.77 2.54 2.59 93.0 95.5 1.16 (ind.)
    σxy 2.73 2.60 2.60 105.1 96.1 1.19 (dir.)
    σx 2.62 2.61 2.62 105.5 90.0 1.37 (dir.)
    12 σy 2.80 2.54 2.59 92.9 96.8 1.09 (ind.)
    σxy 2.75 2.61 2.59 107.7 97.6 1.00 (dir.)
    σx 2.61 2.62 2.62 108.2 89.4 1.32 (dir.)
    14 σy 2.84 2.53 2.58 93.2 98.3 1.05 (ind.)
    σxy 2.77 2.62 2.58 110.3 99.4 0.84 (dir.)
    σx 2.60 2.63 2.63 110.8 89.0 1.28 (dir.)
    16 σy 2.87 2.53 2.57 93.4 100.0 1.03 (ind.)
    σxy 2.78 2.64 2.57 112.6 101.7 0.67 (dir.)
    σx 2.60 2.63 2.63 113.1 88.8 1.24 (dir.)
    18 σy 2.92 2.52 2.56 93.5 102.0 0.98 (ind.)
    σxy 2.79 2.65 2.55 115.2 103.7 0.63 (dir.)
    σx 2.59 2.64 2.64 115.6 88.3 1.21 (dir.)
    20 σy 2.96 2.51 2.54 94.1 103.8 0.94 (ind.)
    σxy 2.72 2.70 2.54 123.7 108.1 0.99 (ind.)
    下载: 导出CSV

    表 A1  单层ε-GeSe在施加20%拉伸应变下优化后的结构的振动频率的计算结果

    Table A1.  Calculated optimized results of vibration frequencies of ε-GeSe monolayer under application of 20% tensile strain.

    σx = 20% σy = 20% σxy = 20%
    E0/meV 165.49 156.07 132.56
    Ef/i/meV 2.650 0.030 0.005
    Ef/i/E0 1.60% 0.02% 0.03%
    下载: 导出CSV
  • [1]

    Zhao Y, Chen Y, Zhang Y H, Liu S F 2017 Mater. Chem. Phys. 189 215Google Scholar

    [2]

    Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A, Colombo L 2014 Nat. Nanotech. 9 768Google Scholar

    [3]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotech. 7 699Google Scholar

    [4]

    Ando T, Fowler A B, Stern F 1982 Rev. Mod. Phys. 54 437Google Scholar

    [5]

    Schedin F, Geim A K, Morozov S V, Hill E W, Blake P, Katsnelson M I, Novoselov K S 2007 Nat. Mater. 6 652Google Scholar

    [6]

    Wang T H, Zhu Y F, Jiang Q 2013 J. Phys. Chem. C 117 12873Google Scholar

    [7]

    Liu L, Feng Y P, Shen Z X 2003 Phys. Rev. B 68 104102Google Scholar

    [8]

    Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902Google Scholar

    [9]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [10]

    Splendiani A, Sun L, Zhang Y B, Li T S, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271Google Scholar

    [11]

    Peng X H, Wei Q, Copple A 2014 Phys. Rev. B 90 085402Google Scholar

    [12]

    Liu H, Neal A T, Zhu Z, Luo Z, Xu X F, Tománek D, Ye P D 2014 ACS Nano. 8 4033Google Scholar

    [13]

    Jain A, McGaughey A J 2015 Sci. Rep 5 8501Google Scholar

    [14]

    Liang L B, Wang J, Lin W Z, Sumpter B G, Meunier V, Pan M 2014 Nano Lett. 14 6400Google Scholar

    [15]

    Kou L Z, Chen C F, Smith S C 2015 Phys. Chem. Lett. 6 2794Google Scholar

    [16]

    Reich E S 2014 Nature 506 19Google Scholar

    [17]

    Singh A K, Hennig R G 2014 Appl. Phys. Lett. 105 042103Google Scholar

    [18]

    Huang L, Wu F G, Li J B 2016 J. Chem. Phys. 144 114708Google Scholar

    [19]

    Zhang S L, Wang N, Liu S G, Huang S P, Zhou W H, Cai B, Xie M Q, Yang Q, Chen X P, Zeng H B 2016 Nanotechnology 27 274001Google Scholar

    [20]

    Wiedemeier H, Georg H, von Schnering G 1978 Z. Krist-Cryst. Mater. 148 295

    [21]

    Vaughn II D D, Patel R J, Hickner M A, Schaak R E 2010 J. Am. Chem. Soc. 132 15170Google Scholar

    [22]

    de Oliveira I S S, Longuinhos R 2016 Phys. Rev. B 94 035440Google Scholar

    [23]

    Bosse J L, Grishin I, Gyu Choi Y, Cheong B K, Lee S, Kolosov O V, Huey B D 2014 Appl. Phys. Lett. 104 053109Google Scholar

    [24]

    Zhang X Y, Shen J W, Lin S Q, Li J, Chen Z W, Li W, Pei Y Z 2016 J. Materiomics 2 331Google Scholar

    [25]

    Xue D J, Liu S C, Dai C M, Chen S Y, He C, Zhao L, Hu J S, Wan L J 2017 J. Am. Chem. Soc. 139 958Google Scholar

    [26]

    Liu S C, Mi Y, Xue D J, Chen Y X, He C, Liu X F, Hu J S, Wan L J 2017 Adv. Electron. Mater. 3 1700141Google Scholar

    [27]

    Sannyal A, Zhang Z Q, Gao X F, Jang J 2018 Comp. Mater. Sci. 154 204Google Scholar

    [28]

    Gomes L C, Carvalho A 2015 Physics 9 2

    [29]

    Fei R X, Li W B, Li J, Y L 2015 Appl. Phys. Lett. 107 237

    [30]

    Zhang S L, Liu S G, Huang S P, Cai B, Xie M Q, Qu L H, Zou Y S, Hu Z Y, Xu X C, Zeng H 2015 Sci. China: Mater. 58 929

    [31]

    Zhao H Q, Mao Y L, Mao X, Shi X, Xu C S, Wang C X, Zhang S M, Zhou D H 2018 Adv. Funct. Mater. 28 1704855Google Scholar

    [32]

    von Rohr F O, Ji H, Cevallos F A, Gao T, Ong N P, Cava R J 2017 J. Am. Chem. Soc. 139 2771Google Scholar

    [33]

    Gomes L C, Trevisanutto P E, Carvalho A, Rodin A S, Neto A C 2016 Phys. Rev. B 94 155428Google Scholar

    [34]

    Mao Y L, Xu C S, Yuan J M, Zhao H Q 2018 Phys. Chem. Chem. Phys. 20 6929Google Scholar

    [35]

    Mao Y L, Long L B, Yuan J M, Zhong J X, Zhao H Q 2018 Chem. Phys. Lett. 706 501Google Scholar

    [36]

    Ersan F, Arkin H, Aktürk E 2017 RSC Adv. 7 37815Google Scholar

    [37]

    Xu Y F, Zhang H, Shao H Z, Ni G, Li J, Lu H L, Zhang R J, Peng B, Zhu Y Y, Zhu H Y, Soukoulis C M 2017 Phys. Rev. B 96 245421Google Scholar

    [38]

    Hu Y H, Zhang S L, Sun S F, Xie M Q, Cai B, Zeng H B 2015 Appl. Phys. Lett. 107 122107Google Scholar

    [39]

    Ong Z Y, Cai Y Q, Zhang G, Zhang Y W 2014 J. Phys. Chem. C 118 25272Google Scholar

    [40]

    Ni Z H, Yu T, Lu Y H, Wang Y Y, Feng Y P, Shen Z X 2008 ACS Nano 2 2301Google Scholar

    [41]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [42]

    Hafner J 2008 J. Comp. Chem. 29 2044Google Scholar

    [43]

    Segall M D, Lindan P J, Probert M A, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condensed Mat. 14 2717Google Scholar

    [44]

    Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I, Refson K, Payne M C 2005 Z. Krist-Cryst Mater. 220 567

    [45]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [46]

    White J A, Bird D M 1994 Phys. Rev. B 50 4954Google Scholar

    [47]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207Google Scholar

    [48]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [49]

    Mao Y L, Ben J, Yuan J M,Zhong J X 2018 Chem. Phys. Lett. 705 12Google Scholar

    [50]

    鲁源坤 2010 硕士学位论文 (山西: 太原科技大学)

    Lu Y K 2010 M. S. Thesis (Taiyuan: University of Science & Technology) (in Chinese)

  • [1] 刘俊岭, 柏于杰, 徐宁, 张勤芳. GaS/Mg(OH)2异质结电子结构的第一性原理研究. 物理学报, 2024, 73(13): 137103. doi: 10.7498/aps.73.20231979
    [2] 周嘉健, 张宇文, 何朝宇, 欧阳滔, 李金, 唐超. 二维SiP2同素异构体结构预测及其电子性质的第一性原理研究. 物理学报, 2022, 71(23): 236101. doi: 10.7498/aps.71.20220853
    [3] 潘凤春, 林雪玲, 王旭明. 应变对(Ga, Mo)Sb磁学和光学性质影响的理论研究. 物理学报, 2022, 71(9): 096103. doi: 10.7498/aps.71.20212316
    [4] 姜楠, 李奥林, 蘧水仙, 勾思, 欧阳方平. 应变诱导单层NbSi2N4材料磁转变的第一性原理研究. 物理学报, 2022, 71(20): 206303. doi: 10.7498/aps.71.20220939
    [5] 王娜, 许会芳, 杨秋云, 章毛连, 林子敬. 单层CrI3电荷输运性质和光学性质应变调控的第一性原理研究. 物理学报, 2022, 71(20): 207102. doi: 10.7498/aps.71.20221019
    [6] 张颖, 刘春生. 硅醚/石墨醚异质结构光电性质的理论研究. 物理学报, 2021, 70(12): 123102. doi: 10.7498/aps.70.20202193
    [7] 李发云, 杨志雄, 程雪, 甄丽营, 欧阳方平. 单层缺陷碲烯电子结构与光学性质的第一性原理研究. 物理学报, 2021, 70(16): 166301. doi: 10.7498/aps.70.20210271
    [8] 张小超, 管美画, 张启瑞, 张长明, 李瑞, 刘建新, 王雅文, 樊彩梅. 单原子Pt吸附于不同原子暴露终端BiOBr{001}面的第一性原理研究. 物理学报, 2021, 70(8): 087101. doi: 10.7498/aps.70.20201572
    [9] 侯璐, 童鑫, 欧阳钢. 一维carbyne链原子键性质应变调控的第一性原理研究. 物理学报, 2020, 69(24): 246802. doi: 10.7498/aps.69.20201231
    [10] 卢群林, 杨伟煌, 熊飞兵, 林海峰, 庄芹芹. 双轴向应变对单层GeSe气体传感特性的影响. 物理学报, 2020, 69(19): 196801. doi: 10.7498/aps.69.20200539
    [11] 陈庆玲, 戴振宏, 刘兆庆, 安玉凤, 刘悦林. 双层h-BN/Graphene结构稳定性及其掺杂特性的第一性原理研究. 物理学报, 2016, 65(13): 136101. doi: 10.7498/aps.65.136101
    [12] 刘博, 王煊军, 卜晓宇. 高压下NH4ClO4结构、电子及弹性性质的第一性原理研究. 物理学报, 2016, 65(12): 126102. doi: 10.7498/aps.65.126102
    [13] 张理勇, 方粮, 彭向阳. 金衬底调控单层二硫化钼电子性能的第一性原理研究. 物理学报, 2015, 64(18): 187101. doi: 10.7498/aps.64.187101
    [14] 朱岩, 张新宇, 张素红, 马明臻, 刘日平, 田宏燕. Mg2Si化合物在静水压下的电子输运性能研究. 物理学报, 2015, 64(7): 077103. doi: 10.7498/aps.64.077103
    [15] 徐雷, 戴振宏, 王森, 刘兵, 孙玉明, 王伟田. 氟化硼碳平面的第一性原理研究. 物理学报, 2014, 63(10): 107102. doi: 10.7498/aps.63.107102
    [16] 冯小勤, 贾建明, 陈贵宾. 弯曲BN纳米片的电子性质及其调制. 物理学报, 2014, 63(3): 037101. doi: 10.7498/aps.63.037101
    [17] 吴木生, 徐波, 刘刚, 欧阳楚英. Cr和W掺杂的单层MoS2电子结构的第一性原理研究. 物理学报, 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [18] 黄有林, 侯育花, 赵宇军, 刘仲武, 曾德长, 马胜灿. 应变对钴铁氧体电子结构和磁性能影响的第一性原理研究. 物理学报, 2013, 62(16): 167502. doi: 10.7498/aps.62.167502
    [19] 谢剑锋, 曹觉先. 六角氮化硼片能带结构的应变调控. 物理学报, 2013, 62(1): 017302. doi: 10.7498/aps.62.017302
    [20] 吴木生, 徐波, 刘刚, 欧阳楚英. 应变对单层二硫化钼能带影响的第一性原理研究. 物理学报, 2012, 61(22): 227102. doi: 10.7498/aps.61.227102
计量
  • 文章访问数:  10376
  • PDF下载量:  180
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-25
  • 修回日期:  2019-03-30
  • 上网日期:  2019-06-01
  • 刊出日期:  2019-06-05

/

返回文章
返回