-
推导了双旋光双反射结构的反射光偏振态方程, 仿真了在环境影响下的反射光偏振态变化情况, 发现双旋光双反射结构的偏振无关反射自稳定性. 从温度和辐射两个方面实验验证了双旋光双反射结构的偏振无关反射自稳定性. 实验结果表明, 当温度在–45 ℃—85 ℃之间变化时, 双旋光双反射结构反射光的平均偏振保持度都能够达到99.77%; 当对光学元件进行400 Gy的辐照后, 平均偏振保持度也能够达到99.35%. 双旋光双反射结构能够在辐射和高低温环境的影响下依靠这种自稳定性保持较高的偏振无关反射能力, 有可能成为星基光学通信系统保偏反射元件的新选择.Acquisition, tracking and pointing (ATP) is an important subsystem of satellite-based optical communication system. It controls the direction of the beam passing through the mirror, and then completes the alignment and stabilization of intersatellite/satellite-ground light path. As is well known, the ordinary mirror changes the polarization of photons, so the ATP mirrors must be specially processed in quantum communication system and coherent optical communication system. For example, in order to counteract the change of photon polarization caused by the mirror, it is usually necessary to coat the mirror. However, this membrane structure must be tested by the radiation and temperature change from the space environment. A polarization-independent reflector based on two magneto-optical crystals and two mirrors is proposed. This structure does not need any special treatment (such as coating) for the reflector. It can realize polarization-independent reflection at any angle only through the reasonable configuration of the ordinary reflector and 90° rotatory crystal. In addition, it is found that the structure has self-stability, that is, when the polarization characteristics of optical devices change due to environmental change, the overall polarization reflection characteristics of the reflective structure remain unchanged. The polarization equation of reflected light of reflector based on two magneto-optical crystal and two mirrors is derived. The polarization of reflected light under environmental influence is simulated, and the polarization independent reflection self-stability of double-rotating double-reflection structure is found. The polarization-independent self-stabilization of this structure is verified by temperature and radiation experiment. The experimental results show that the average polarization retention of the reflecting light of the reflector based on two magneto-optical crystal and two mirrors can reach 99.77% when the temperature varies from -45 ℃ to 85 ℃. The mirrors and the magneto-optical crystals are irradiated by cobalt 60 with a total dose of 400 Gy, and the average polarization retention of the reflective structure is also 99.35%. The experimental results show that the polarization-independent reflectance can be kept stable for a long time in the space environment where radiation and temperature change dramatically. Relying on this self-stability, the reflector based on two magneto-optical crystals and two mirrors can maintain high polarization-independent reflection capability for a long time in a space environment. This makes it a new option for polarization-preserving reflective components in satellite-based optical communication systems.
-
Keywords:
- polarization state /
- polarization independent reflection /
- temperature /
- radiation
[1] Gregory M, Heine F F 2012 Opt. Eng. 51 1202
[2] Moss E B 2012 J. Spacecr. Rockets 5 698
[3] Vallone G, Bacco D, Dequal D, Gaiarin S, Luceri V, Bianco G, Villoresi P 2015 Phys. Rev. Lett. 115 040502Google Scholar
[4] Takenaka H, Carrascocasado A, Fujiwara M, Kitamura M, Sasaki M, Toyoshima M 2017 Nat. Photon. 1 31
[5] Kim J, Tapley B D 2002 J. Guid. Control Dyn. 6 1100
[6] Romano M, Agrawal B N 2003 Acta Astronaut. 4 509
[7] Harten G V, Snik F, Keller C U 2009 Publ. Astron. Soc. Pac. 878 377
[8] 蒋丽媛, 刘定权, 马冲, 蔡清元, 高凌山 2018 中国光学 4 80
Jiang L Y, Liu D Q, Ma C, Cai Q Y, Gao L S 2018 Chin. Opt. 4 80
[9] 范鲜红, 李 敏, 尼启良, 刘世界, 王晓光, 陈波 2008 物理学报 57 6494Google Scholar
Fan X H, Li M, Ni Q L, Liu S J, Wang X G, Chen B 2008 Acta Phys. Sin. 57 6494Google Scholar
[10] 王春琴, 张鑫, 张立国, 张如意, 金历群, 孙越强 2018 上海航天 4 80
Wang C Q, Zhang X, Zhang L G, Zhang R Y, Jin L Q, Sun Y Q 2018 Aerospace Shanghai 4 80
[11] Cheng X T, Xu X H, Liang X G 2016 J. Ordn. Equip. Eng. 5 1
[12] Good E J, Ghent D J, Bulgin C E, Remedios J J 2017 J. Geoph. Res. Atmo. 17 124
[13] 赵顾颢, 赵尚弘, 幺周石, 蒙文, 王翔, 朱子行 2012 中国激光 10 236
Zhao G H, Zhao S H, Yao Z S, Meng W, Wang X, Zhu Z H 2012 Chin. J. Las. 10 236
[14] 赵顾颢, 赵尚弘, 幺周石, 蒙文, 王翔, 朱子行 2013 物理学报 62 134201Google Scholar
Zhao G H, Zhao S H, Yao Z S, Meng W, Wang X, Zhu Z H 2013 Acta Phys. Sin. 62 134201Google Scholar
[15] 王艳, 严雄伟, 郑建刚 2016 太赫兹科学与电子信息学报 5 811Google Scholar
Wang Y, Yan X W, Zheng J G 2016 Inf. Elect. Eng. 5 811Google Scholar
[16] Hisatake K, Matsubara I, Maeda K, Fujihara T, Uematsu K 1989 Phys. Status Solidi A 24 5
[17] 史萌 2006 博士学位论文(曲阜: 曲阜师范大学)
Shi M 2006 Ph. D. Dissertation (Qufu: Qufu Normal University) (in Chinese)
-
-
[1] Gregory M, Heine F F 2012 Opt. Eng. 51 1202
[2] Moss E B 2012 J. Spacecr. Rockets 5 698
[3] Vallone G, Bacco D, Dequal D, Gaiarin S, Luceri V, Bianco G, Villoresi P 2015 Phys. Rev. Lett. 115 040502Google Scholar
[4] Takenaka H, Carrascocasado A, Fujiwara M, Kitamura M, Sasaki M, Toyoshima M 2017 Nat. Photon. 1 31
[5] Kim J, Tapley B D 2002 J. Guid. Control Dyn. 6 1100
[6] Romano M, Agrawal B N 2003 Acta Astronaut. 4 509
[7] Harten G V, Snik F, Keller C U 2009 Publ. Astron. Soc. Pac. 878 377
[8] 蒋丽媛, 刘定权, 马冲, 蔡清元, 高凌山 2018 中国光学 4 80
Jiang L Y, Liu D Q, Ma C, Cai Q Y, Gao L S 2018 Chin. Opt. 4 80
[9] 范鲜红, 李 敏, 尼启良, 刘世界, 王晓光, 陈波 2008 物理学报 57 6494Google Scholar
Fan X H, Li M, Ni Q L, Liu S J, Wang X G, Chen B 2008 Acta Phys. Sin. 57 6494Google Scholar
[10] 王春琴, 张鑫, 张立国, 张如意, 金历群, 孙越强 2018 上海航天 4 80
Wang C Q, Zhang X, Zhang L G, Zhang R Y, Jin L Q, Sun Y Q 2018 Aerospace Shanghai 4 80
[11] Cheng X T, Xu X H, Liang X G 2016 J. Ordn. Equip. Eng. 5 1
[12] Good E J, Ghent D J, Bulgin C E, Remedios J J 2017 J. Geoph. Res. Atmo. 17 124
[13] 赵顾颢, 赵尚弘, 幺周石, 蒙文, 王翔, 朱子行 2012 中国激光 10 236
Zhao G H, Zhao S H, Yao Z S, Meng W, Wang X, Zhu Z H 2012 Chin. J. Las. 10 236
[14] 赵顾颢, 赵尚弘, 幺周石, 蒙文, 王翔, 朱子行 2013 物理学报 62 134201Google Scholar
Zhao G H, Zhao S H, Yao Z S, Meng W, Wang X, Zhu Z H 2013 Acta Phys. Sin. 62 134201Google Scholar
[15] 王艳, 严雄伟, 郑建刚 2016 太赫兹科学与电子信息学报 5 811Google Scholar
Wang Y, Yan X W, Zheng J G 2016 Inf. Elect. Eng. 5 811Google Scholar
[16] Hisatake K, Matsubara I, Maeda K, Fujihara T, Uematsu K 1989 Phys. Status Solidi A 24 5
[17] 史萌 2006 博士学位论文(曲阜: 曲阜师范大学)
Shi M 2006 Ph. D. Dissertation (Qufu: Qufu Normal University) (in Chinese)
计量
- 文章访问数: 6951
- PDF下载量: 29
- 被引次数: 0