搜索

x
中国物理学会期刊

铁镁共掺钽酸锂晶体的第一性原理研究

CSTR: 32037.14.aps.68.20190575

First-principles study of Fe:Mg:LiTaO3 crystals

CSTR: 32037.14.aps.68.20190575
PDF
HTML
导出引用
  • 利用第一性原理对LiTaO3晶体以及不同Mg浓度的Fe:Mg:LiTaO3晶体的电子结构和吸收光谱进行了研究. 结果显示: 掺铁钽酸锂晶体的杂质能级主要由Fe的3d态轨道贡献, 禁带宽度为3.05 eV. 掺入镁后, 在禁带中没有新的能级产生, 掺Mg浓度小于或超过阈值(略小于6 mol%)时, 禁带宽度分别为2.72 eV和 2.45 eV. Fe:LiTaO3晶体分别在417 nm和745 nm处呈现两个吸收峰, 这两峰归结于Fe 3d分裂轨道电子的跃迁; Mg:Fe:LiTaO3晶体吸收峰强度较单掺Fe的LiTaO3晶体下降, 并略有偏移, 当掺镁浓度超过阈值时, 短波段峰移至457 nm吸收峰, 而长波段745 nm处的吸收峰消失. 研究表明: Fe离子的分裂轨道T2g, Eg跃迁所对应的吸收峰与铁离子的占位有关, Mg离子浓度达到阈值, 使Fe离子占Ta位, Eg对应的吸收峰消失. 在利用457 nm波段为功能性吸收时, 采用较高掺Mg不会对吸收产生不利影响; 在利用745 nm波段时, Fe占Li位比Fe占Ta位在存储应用中更具优势, 不宜采用高掺镁.

     

    The electronic structures and absorption spectra of LiTaO3 (LT) crystal and Fe:Mg:LiTaO3 crystal with different Mg concentrations are investigated by first-principles through using the density functional theory. The supercell crystal structures are established with 60 atoms with four models: the near-stoichiometric pure LiTaO3 crystal (LT); the iron doped LiTaO3 crystal (Fe:LT), with the charge compensation model expressed as FeLi2+-2VLi; the iron and magnesium co-doped LiTaO3 crystal (Fe:Mg:LT), with the charge compensation model taken as FeLi2+-MgLi+-3VLi; the other iron and magnesium co-doped LiTaO3 crystal (Fe:Mg(E):LT), with Mg ion concentration near threshold value (slightly less than 6 mol%) and taking the charge compensation model as 2MgLi+-FeTa2–. The geometry optimization results show that the total energy values of all models can achieve certain stable values, which means that the models used in this paper are very close to the actual crystal structures. In the electronic structures, the extrinsic defect energy levels in the forbidden band of Fe:LT crystal are mainly contributed from the Fe 3d orbital, and the band gap of Fe:LT about 3.05 eV is narrower than that of LT, the band gap of Fe:Mg:LT and Fe:Mg(E):LT sample are 2.72 eV and 2.45 eV respectively. The results show that the orbit of Fe 3d, Ta 5d and O 2p are superposed with each other, forming covalent bonds, which results in conduction band and valence band shifting toward low energy in iron doped LiTaO3 crystal. The Fe 3d orbit is split into Eg orbit and T2g orbit under the influence of the crystal field. There are two absorption peaks at 417 nm (2.97 eV) and 745 nm (1.66 eV) in the Fe:LiTaO3 crystal. The first one is attributed to the transfer of the T2g orbital electron to conduction band. The last one can be taken as the result of Eg electron transfer of Fe2+ in crystal. The intensities and positions of these peaks vary with the concentration of Mg ion. Specially, with the concentration of Mg ion attaining the threshold value, the peak at 745 nm disappears, and the other peak moves slightly to 457 nm (2.71 eV). With the Mg ion concentration at the threshold value, the Fe ions can occupy Ta positions. This occupying condition makes the Eg orbital energy change greatly compared with the scenario in the FeLi condition, and it affects hardly the T2g orbital energy. So, if the absorption nearby 745 nm waveband can be taken as the useful process in holographic storage application, it is better to take smaller concentration of Mg ions (less than threshold value). On the other hand, nearby 457 nm waveband, concentration of Mg ions can be chosen as a large value.

     

    目录

    /

    返回文章
    返回