搜索

x
中国物理学会期刊

利用海洋环境噪声空间特性估计浅海海底分层结构及地声参数

CSTR: 32037.14.aps.68.20190824

Estimating structure and geoacoustic parameters of sub-bottom by using spatial characteristics of ocean ambient noise in shallow water

CSTR: 32037.14.aps.68.20190824
PDF
HTML
导出引用
  • 海洋环境噪声场中包含了海洋中的诸多信息, 海底地声参数是影响海洋环境噪声场空间分布的主要因素之一. 对于不同的海底分层结构, 海底反射损失会根据沉积层厚度和各层声速呈现出不同的临界角和干涉条纹结构. 本文利用Harrison能流理论, 从理想反射系数出发, 分别考虑了声速、密度、衰减系数、沉积层厚度等几种参数对无沉积层和单层沉积层中反射系数的影响, 并对单层沉积层海底的反射系数进行了化简, 结合互易原理解释了反射损失条纹结构的形成机理. 中国黄海某海区试验结果表明, 利用海洋环境噪声空间方向谱获得的海底反射损失, 可以提取海底反射临界角和干涉条纹信息, 由此可估计出海底分层结构、声速和沉积层厚度等海底参数信息.

     

    The field of ocean ambient noise contains numerous information about the water column, especially the information about the sub-bottom. The geoacoustics parameters of sub-bottom are very important factors influencing the spatial characteristics of ocean ambient noise field. For different layered structures of the sub-bottom, the bottom-loss shows different critical angles according to sound speed of each layer, while the structure of interference fringe is dependent on the thickness of the sediment. Flux theory of ocean ambient noise proposed by Harrison is used in this paper. Using this theory, the curve of bottom-loss can be extracted by computing the ratio between the energy of the upward wave and the downward wave. From the ideal reflection coefficient, the influence of sound speed, density and attenuation coefficient on reflection coefficient are discussed in the situation of the sub-bottom of acoustic half space, while the reflection coefficient of 1 layer of sediment is simplified. Initially, the reflection coefficient is the sum of sound waves reflect from the sub-bottom transmitted from the same source at the same angle. Only the first two terms are reserved, so that the mechanism of the interference fringe can be easily discussed. The structure of interference fringe can be explained which is affected by the thickness of the sediment. The curve of bottom-loss oscillates periodically with the increase of the thickness of the sub-bottom. Also by the reciprocity principle, the interference fringe of the reflection coefficient can be explained by considering the sound transmitted from two point sources at the surface of the sea. In this way the same result can be obtained as that from the method of simplification. The result of the experiment in China Yellow Sea shows that the information about the reflection coefficient of the sub-bottom can be extracted by the vertical azimuth spectrum of ocean ambient noise. In this way, the critical angle can be obtained, so that the sound speed of the sub-bottom can be estimated by using Snell law. The structure of the interference fringe is also contained in the bottom-loss curve estimated by ocean ambient noise. Therefore the layered structure, sound speed and the thickness of the layer of the sub-bottom can be estimated.

     

    目录

    /

    返回文章
    返回