搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

声学超构材料及其物理效应的研究进展

田源 葛浩 卢明辉 陈延峰

引用本文:
Citation:

声学超构材料及其物理效应的研究进展

田源, 葛浩, 卢明辉, 陈延峰

Research advances in acoustic metamaterials

Tian Yuan, Ge Hao, Lu Ming-Hui, Chen Yan-Feng
PDF
HTML
导出引用
  • 声学超构材料作为一种新型的人工结构材料, 拥有天然材料所不具备的超常物理特性, 进一步拓展了材料的声学属性. 同时, 声学超构材料可以实现对声波精准的、可设计的操控, 以及许多新颖奇特的物理现象, 如声准直、声聚焦、声场隐身、声单向传输、声学超分辨成像等, 具有重要的理论研究意义和应用价值. 另外, 拓扑材料的研究已延伸至声学领域, 声学超构材料的拓扑性质成为近年的研究热点, 受到人们的广泛关注. 其鲁棒性边界态具有缺陷免疫、背散射抑制的特性, 应用潜力巨大. 本文综述了近十几年来声学超构材料的研究概况, 介绍了相关的代表性工作, 包括奇异等效声学参数的超构材料、声学超构表面、吸声超构材料、声学超分辨成像、宇称时间对称性声学和拓扑声学等, 阐述了声学超构材料的设计理念和方法, 并对其技术挑战和应用前景进行了讨论和总结.
    Acoustic metamaterials have opened up unprecedented possibilities for wave manipulation, and can be utilized to realize many novel and fascinating physical phenomena, such as acoustic self-collimation, cloaking, asymmetric transmission, and negative refraction. In this review, we explore the fundamental physics of acoustic metamaterials and introduce several exciting developments, including the realization of unconventional effective parameters, acoustic metasurface, total sound absorption, high-resolution imaging, parity-time-symmetric materials, and topological acoustics. Acoustic metamatetials with negative effective parameters that are not observed in nature expand acoustic properties of natural materials. Acoustic metasurfaces can exhibit wavefront-shaping capabilities, with thickness being much smaller than the wavelength. The precisely designed matematerials provide the new possibility of steering waves on a subwavelength scale, which can be used for acoustic high-resolution imaging beyond the diffraction limit. The metamaterial absorbers can achieve total sound absorption at low frequencies and exhibit broadband absorption spectrum. Moreover, structure designs guided by the topological physics further broaden the whole field of acoustic metamaterials. Phononic crystals have become aflexible platform for studying new physics and exotic phenomenarelated to topological phases. Finally, we conclude the developments of acoustic metamaterials, discuss the technical challenges, and introduce potential applications in this emerging field.
      通信作者: 卢明辉, luminghui@nju.edu.cn
    • 基金项目: 国家重点研发计划 (批准号: 2017YFA0303702, 2018YFA0306200)、国家自然科学基金 (批准号: 51732006, 11474158, 11804149)和国家自然科学基金杰出青年基金 (批准号: 11625418)资助的课题
      Corresponding author: Lu Ming-Hui, luminghui@nju.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant Nos. 2017YFA0303702, 2018YFA0306200), the National Natural Science Foundation of China (Grant Nos. 51732006, 11474158, 11804149), and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No.11625418)
    [1]

    Liu Z Y, Zhang X X, Mao Y W, Zhu Y Y, Yang Z, Chan C T, Sheng P 2000 Science 289 1734Google Scholar

    [2]

    Zheludev N I, Kivshar Y S 2012 Nat. Mater. 11 917Google Scholar

    [3]

    Cummer S A, Christensen J, Alù A 2016 Nat. Rev. Mater. 1 16001Google Scholar

    [4]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966Google Scholar

    [5]

    Kaina N, Lemoult F, Fink M, Lerosey G 2015 Nature 525 77Google Scholar

    [6]

    Yang Z Y, Mei J, Yang M, Chan N, Sheng P 2008 Phys. Rev. Lett. 101 204301Google Scholar

    [7]

    Fang N, Xi D, Xu J, Ambati M, Srituravanich W, Sun C, Zhang X 2006 Nat. Mater. 5 452Google Scholar

    [8]

    Christensen J, Martín-Moreno L, García-Vidal F J 2010 Appl. Phys. Lett. 97 134106Google Scholar

    [9]

    Li J, Chan C T 2004 Phys. Rev. E 70 055602Google Scholar

    [10]

    Lee S H, Park C M, Seo Y M, Wang Z G, Kim C K 2010 Phys. Rev. Lett. 104 054301Google Scholar

    [11]

    Brunet T, Merlin A, Mascaro B, Zimny K, Leng J, Poncelet O, Aristégui C, Mondain-Monval O 2015 Nat. Mater. 14 384

    [12]

    Liang Z X, Li J S 2012 Phys. Rev. Lett. 108 114301Google Scholar

    [13]

    Xie Y B, Popa B, Zigoneanu L, Cummer S A 2013 Phys. Rev. Lett. 110 175501Google Scholar

    [14]

    Christensen J, de Abajo F J G 2012 Phys. Rev. Lett. 108 124301Google Scholar

    [15]

    García-Chocano V M, Christensen J, Sánchez-Dehesa J 2014 Phys. Rev. Lett. 112 144301Google Scholar

    [16]

    Fleury R, Alù A 2013 Phys. Rev. Lett. 111 055501Google Scholar

    [17]

    Liberal I, Engheta N 2017 Nat. Photon. 11 149Google Scholar

    [18]

    Dubois M, Shi C Z, Zhu X F, Wang Y, Zhang X 2017 Nat. Commun. 8 14871Google Scholar

    [19]

    Assouar B, Liang B, Wu Y, Li Y, Cheng J C, Jing Y 2018 Nat. Rev. Mater. 3 460Google Scholar

    [20]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [21]

    Li Y, Liang B, Gu Z M, Zou X Y, Cheng J C 2013 Sci. Rep. 3 2546Google Scholar

    [22]

    Li Y, Jiang X, Liang B, Cheng J C, Zhang L K 2015 Phys. Rev. Appl. 4 024003Google Scholar

    [23]

    Melde K, Mark A G, Qiu T, Fischer P 2016 Nature 537 518Google Scholar

    [24]

    Xie Y, Shen C, Wang W, Li J, Suo D, Popa B I, Jing Y, Cummer S A 2016 Sci. Rep. 6 35437Google Scholar

    [25]

    Zhu Y, Hu J, Fan X, Yang J, Liang B, Zhu X, Cheng J 2018 Nat. Commun. 9 1632Google Scholar

    [26]

    Shi C Z, Dubois M, Wang Y, Zhang X 2017 Proc. Natl. Acad. Sci. USA 114 7250Google Scholar

    [27]

    Jiang X, Liang B, Cheng J C, Qiu C W 2018 Adv. Mater. 30 1800257Google Scholar

    [28]

    Jiang X, Li Y, Liang B, Cheng J C, Zhang L K 2016 Phys. Rev. Lett. 117 034301Google Scholar

    [29]

    Ma G C, Fan X Y, Sheng P, Fink M 2018 Proc. Natl. Acad. Sci. USA 115 6638Google Scholar

    [30]

    Li Y, Assouar B M 2016 Appl. Phys. Lett. 108 063502

    [31]

    Shen C, Cummer S A 2018 Phys. Rev. Appl. 9 054009Google Scholar

    [32]

    Jiménez N, Huang W, Romero-García V, Pagneux V, Groby J P 2016 Appl. Phys. Lett. 109 121902Google Scholar

    [33]

    Chen J, Xiao J, Lisevych D, Shakouri A, Fan Z 2018 Nat. Commun. 9 4920Google Scholar

    [34]

    Ma F Y, Huang M, Xu Y C, Wu J H 2018 Sci. Rep. 8 5906Google Scholar

    [35]

    Li J F, Shen C, Díaz-Rubio A, Tretyakov S A, Cummer S A 2018 Nat.Commun. 9 1342Google Scholar

    [36]

    Quan L, Ra’di Y, Sounas D L, Alù A 2018 Phys. Rev. Lett. 120 254301Google Scholar

    [37]

    Lu M H, Feng L, Chen Y F 2009 Mater. Today 12 34

    [38]

    Ge H, Yang M, Ma C, Lu M H, Chen Y F, Fang N, Sheng P 2018 Natl. Sci. Rev. 5 159Google Scholar

    [39]

    Yang M, Sheng P 2017 Annu. Rev. Mater. Res. 47 83Google Scholar

    [40]

    Yang M, Meng C, Fu C X, Li Y, Yang Z Y, Sheng P 2015 Appl. Phys. Lett. 107 104104Google Scholar

    [41]

    Ma G C, Yang M, Xiao S W, Yang Z Y, Sheng P 2014 Nat. Mater. 13 873Google Scholar

    [42]

    Jiménez N, Romero-García V, Pagneux V, Groby J P 2017 Phys. Rev. B 95 014205Google Scholar

    [43]

    Jiang X, Liang B, Li R Q, Zou X Y, Yin L L, Cheng J C 2014 Appl. Phys. Lett. 105 243505

    [44]

    Yang M, Chen S Y, Fu C X, Sheng P 2017 Mater. Horiz. 4 673Google Scholar

    [45]

    Ma G C, Sheng P 2016 Sci. Adv. 2 e1501595Google Scholar

    [46]

    Lemoult F, Fink M, Lerosey G 2011 Phys. Rev. Lett. 107 064301Google Scholar

    [47]

    Lemoult F, Kaina N, Fink M, Lerosey G 2013 Nat. Phys. 9 55

    [48]

    Park J J, Park C M, Lee K J B, Lee S H 2015 Appl. Phys. Lett. 106 051901Google Scholar

    [49]

    Ambati M, Fang N, Sun C, Zhang X 2007 Phys. Rev. B 75 195447Google Scholar

    [50]

    Park C M, Park J J, Lee S H, Seo Y M, Kim C K, Lee S H 2011 Phys. Rev. Lett. 107 194301Google Scholar

    [51]

    Zhu J, Christensen J, Jung J, Martin-Moreno L, Yin X, Fok L, Zhang X, Garcia-Vidal F J 2011 Nat. Phys. 7 52

    [52]

    Li J, Fok L, Yin X, Bartal G, Zhang X 2009 Nat. Mater. 8 931Google Scholar

    [53]

    Ma G C, Fan X Y, Ma F Y, de Rosny J, Sheng P, Fink M 2018 Nat. Phys. 14 608Google Scholar

    [54]

    Lanoy M, Pierrat R, Lemoult F, Fink M, Leroy V, Tourin A 2015 Phys. Rev. B 91 224202Google Scholar

    [55]

    Lemoult F, Fink M, Lerosey G 2011 Waves in Random and Complex Media 21 614

    [56]

    Bender C M, Boettcher S 1998 Phys. Rev. Lett. 80 5243Google Scholar

    [57]

    Chong Y D, Ge L, Stone A D 2011 Phys. Rev. Lett. 106 093902Google Scholar

    [58]

    Feng L, Xu Y L, Fegadolli W S, Lu M H, Oliveira J E B, Almeida V R, Chen Y F, Scherer A 2013 Nat. Mater. 12 108

    [59]

    Chang L, Jiang X S, Hua S Y, Yang C, Wen J M, Jiang L, Li G, Wang G Z, Xiao M 2014 Nat. Photon. 8 524Google Scholar

    [60]

    Feng L, Wong Z J, Ma R M, Wang Y, Zhang X 2014 Science 346 972Google Scholar

    [61]

    Zhu X F, Ramezani H, Shi C Z, Zhu J, Zhang X 2014 Phys. Rev. X 4 031042

    [62]

    Shi C Z, Dubois M, Chen Y, Cheng L, Ramezani H, Wang Y, Zhang X 2016 Nat. Commun. 7 11110Google Scholar

    [63]

    Fleury R, Sounas D L, Alù A 2016 IEEE J. Sel. Top. Quant. 22 121Google Scholar

    [64]

    Aurégan Y, Pagneux V 2017 Phys. Rev. Lett. 118 174301Google Scholar

    [65]

    Christensen J, Willatzen M, Velasco V R, Lu M H 2016 Phys. Rev. Lett. 116 207601Google Scholar

    [66]

    Lu M H, Zhang C, Feng L, Zhao J, Chen Y F, Mao Y W, Zi J, Zhu Y Y, Zhu S N, Ming N B 2007 Nat. Mater. 6 744Google Scholar

    [67]

    Lu M H, Liu X K, Feng L, Li J, Huang C P, Chen Y F, Zhu Y Y, Zhu S N, Ming N B 2007 Phys. Rev. Lett. 99 174301Google Scholar

    [68]

    Haldane F D M, Raghu S 2008 Phys. Rev. Lett. 100 013904Google Scholar

    [69]

    Wang Z, Chong Y, Joannopoulos J D, Soljačić M 2009 Nature 461 772Google Scholar

    [70]

    Fleury R, Sounas D L, Sieck C F, Haberman M R, Alù A 2014 Science 343 516Google Scholar

    [71]

    Ni X, He C, Sun X C, Liu X P, Lu M H, Feng L, Chen Y F 2015 New J. Phys. 17 053016Google Scholar

    [72]

    Ding Y J, Peng Y G, Zhu Y F, Fan X D, Yang J, Liang B, Zhu X F, Wan X G, Cheng J C 2019 Phys. Rev. Lett. 122 014302Google Scholar

    [73]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802Google Scholar

    [74]

    König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L, Zhang S C 2007 Science 318 766Google Scholar

    [75]

    He C, Ni X, Ge H, Sun X C, Chen Y B, Lu M H, Liu X P, Chen Y F 2016 Nat. Phys. 12 1124Google Scholar

    [76]

    Yu S Y, He C, Wang Z, Liu F K, Sun X C, Li Z, Lu H Z, Lu M H, Liu X P, Chen Y F 2018 Nat. Commun. 9 3072Google Scholar

    [77]

    Lu J Y, Qiu C Y, Ye L P, Fan X Y, Ke M Z, Zhang F, Liu Z Y 2017 Nat. Phys. 13 369

    [78]

    Wang Z, Yu S Y, Liu F K, Tian Y, Gupta S K, Lu M H, Chen Y F 2018 Appl. Phys. Express 11 107301Google Scholar

    [79]

    Wang Z, Liu F K, Yu S Y, Yan S L, Lu M H, Jing Y, Chen Y F 2019 J. Appl. Phys. 125 044502Google Scholar

    [80]

    He C, Yu S Y, Ge H, Wang H Q, Tian Y, Zhang H J, Sun X C, Chen Y B, Zhou J, Lu M H, Chen Y F 2018 Nat. Commun. 9 4555Google Scholar

    [81]

    Popa B I, Zigoneanu L, Cummer S A 2011 Phys. Rev. Lett. 106 253901Google Scholar

    [82]

    Zigoneanu L, Popa B I, Cummer S A 2014 Nat. Mater. 13 352Google Scholar

    [83]

    Li X F, Ni X, Feng L, Lu M H, He C, Chen Y F 2011 Phys. Rev. Lett. 106 084301Google Scholar

    [84]

    Valentine J, Zhang S, Zentgraf T, Ulin-Avila E, Genov D A, Bartal G, Zhang X 2008 Nature 455 376Google Scholar

    [85]

    Xiao S, Drachev V P, Kildishev A V, Ni X, Chettiar U K, Yuan H-K, Shalaev V M 2010 Nature 466 735Google Scholar

    [86]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977Google Scholar

    [87]

    Watts C M, Liu X, Padilla W J 2012 Adv. Mater. 24 OP98

    [88]

    Berger J B, Wadley H N G, McMeeking R M 2017 Nature 543 533Google Scholar

    [89]

    Frenzel T, Kadic M, Wegener M 2017 Science 358 1072Google Scholar

    [90]

    Han T C, Bai X, Liu D, Gao D L, Li B, Thong J T L, Qiu C W 2015 Sci. Rep. 5 10242Google Scholar

    [91]

    Han T C, Bai X, Thong J T L, Li B W, Qiu C W 2014 Adv. Mater. 26 1731Google Scholar

  • 图 1  弹性模量ρ和体弹性模量K的参数空间图 (a) 负质量密度超构材料, ρ < 0, K > 0; (b) 天然材料, ρ > 0, K > 0; (c) 双负超构材料, ρ < 0, K < 0; (d) 负体弹性模量超构材料, ρ > 0, K < 0

    Fig. 1.  Parameter space for mass density ρ and bulk modulus K: (a) Metamaterials with negative effective mass density, ρ < 0, K > 0; (b) natural materials, ρ > 0, K > 0; (c) double-negative metamaterials, ρ < 0, K < 0; (d) metamaterials with negative effective bulk modulus, ρ > 0, K < 0

    图 2  (a)斯涅耳定律; (b)广义斯涅耳定律

    Fig. 2.  (a) Snell’s law; (b) generalized Snell’s law.

    图 3  声学超构表面的三种典型形式及其物理效应 (a)反射型超构表面; (b)透射型超构表面; (c)吸收型超构表面;(d)自弯曲波束调控; (e)声学全息成像; (f)低频完美吸声体

    Fig. 3.  Three typical forms of acoustic metasurfaces and their physical effects: (a) Reflective metasurfaces; (b) transmissive metasurfaces; (c) absorbing metasurfaces; (d) the self-bending beam; (e) acoustic holographic imaging; (f) perfect sound absorber at low frequency

    图 4  吸声超构材料 (a)薄膜型结构; (b)亥姆赫兹共振结构; (c) Fabry-Pérot共振结构; (d)优化的宽频吸声谱

    Fig. 4.  Sound absorbing metamaterial: (a) Membrane-type structure; (b) Helmholtz resonator structure; (c) Fabry-Pérot resonator structure; (d) optimized broadband sound absorption spectrum

    图 5  (a)负折射声学超透镜; (b)管道结构透镜; (c)扇形声学透镜; (d)薄膜结构超材料

    Fig. 5.  (a) Acoustic superlens with negative refractive; (b) holey-structured metamaterial lens; (c) fin-shaped acoustic lens; (d) membrane-type metamaterial.

    图 6  (a)引入环流的声学陈绝缘体及其投影能带; (b)基于模式杂化的声学拓扑绝缘体结构及其投影能带; (c)引入滑移对称性的三维拓扑声子晶体及其投影能带

    Fig. 6.  (a) Acoustic topological Chern insulator by incorporating the circulating flow and its projected energy band; (b) acoustic topological insulator based on hybridized modes and its projected energy band; (c) three-dimensional topological acoustic crystals with glide symmetry and its projected energy band.

  • [1]

    Liu Z Y, Zhang X X, Mao Y W, Zhu Y Y, Yang Z, Chan C T, Sheng P 2000 Science 289 1734Google Scholar

    [2]

    Zheludev N I, Kivshar Y S 2012 Nat. Mater. 11 917Google Scholar

    [3]

    Cummer S A, Christensen J, Alù A 2016 Nat. Rev. Mater. 1 16001Google Scholar

    [4]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966Google Scholar

    [5]

    Kaina N, Lemoult F, Fink M, Lerosey G 2015 Nature 525 77Google Scholar

    [6]

    Yang Z Y, Mei J, Yang M, Chan N, Sheng P 2008 Phys. Rev. Lett. 101 204301Google Scholar

    [7]

    Fang N, Xi D, Xu J, Ambati M, Srituravanich W, Sun C, Zhang X 2006 Nat. Mater. 5 452Google Scholar

    [8]

    Christensen J, Martín-Moreno L, García-Vidal F J 2010 Appl. Phys. Lett. 97 134106Google Scholar

    [9]

    Li J, Chan C T 2004 Phys. Rev. E 70 055602Google Scholar

    [10]

    Lee S H, Park C M, Seo Y M, Wang Z G, Kim C K 2010 Phys. Rev. Lett. 104 054301Google Scholar

    [11]

    Brunet T, Merlin A, Mascaro B, Zimny K, Leng J, Poncelet O, Aristégui C, Mondain-Monval O 2015 Nat. Mater. 14 384

    [12]

    Liang Z X, Li J S 2012 Phys. Rev. Lett. 108 114301Google Scholar

    [13]

    Xie Y B, Popa B, Zigoneanu L, Cummer S A 2013 Phys. Rev. Lett. 110 175501Google Scholar

    [14]

    Christensen J, de Abajo F J G 2012 Phys. Rev. Lett. 108 124301Google Scholar

    [15]

    García-Chocano V M, Christensen J, Sánchez-Dehesa J 2014 Phys. Rev. Lett. 112 144301Google Scholar

    [16]

    Fleury R, Alù A 2013 Phys. Rev. Lett. 111 055501Google Scholar

    [17]

    Liberal I, Engheta N 2017 Nat. Photon. 11 149Google Scholar

    [18]

    Dubois M, Shi C Z, Zhu X F, Wang Y, Zhang X 2017 Nat. Commun. 8 14871Google Scholar

    [19]

    Assouar B, Liang B, Wu Y, Li Y, Cheng J C, Jing Y 2018 Nat. Rev. Mater. 3 460Google Scholar

    [20]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [21]

    Li Y, Liang B, Gu Z M, Zou X Y, Cheng J C 2013 Sci. Rep. 3 2546Google Scholar

    [22]

    Li Y, Jiang X, Liang B, Cheng J C, Zhang L K 2015 Phys. Rev. Appl. 4 024003Google Scholar

    [23]

    Melde K, Mark A G, Qiu T, Fischer P 2016 Nature 537 518Google Scholar

    [24]

    Xie Y, Shen C, Wang W, Li J, Suo D, Popa B I, Jing Y, Cummer S A 2016 Sci. Rep. 6 35437Google Scholar

    [25]

    Zhu Y, Hu J, Fan X, Yang J, Liang B, Zhu X, Cheng J 2018 Nat. Commun. 9 1632Google Scholar

    [26]

    Shi C Z, Dubois M, Wang Y, Zhang X 2017 Proc. Natl. Acad. Sci. USA 114 7250Google Scholar

    [27]

    Jiang X, Liang B, Cheng J C, Qiu C W 2018 Adv. Mater. 30 1800257Google Scholar

    [28]

    Jiang X, Li Y, Liang B, Cheng J C, Zhang L K 2016 Phys. Rev. Lett. 117 034301Google Scholar

    [29]

    Ma G C, Fan X Y, Sheng P, Fink M 2018 Proc. Natl. Acad. Sci. USA 115 6638Google Scholar

    [30]

    Li Y, Assouar B M 2016 Appl. Phys. Lett. 108 063502

    [31]

    Shen C, Cummer S A 2018 Phys. Rev. Appl. 9 054009Google Scholar

    [32]

    Jiménez N, Huang W, Romero-García V, Pagneux V, Groby J P 2016 Appl. Phys. Lett. 109 121902Google Scholar

    [33]

    Chen J, Xiao J, Lisevych D, Shakouri A, Fan Z 2018 Nat. Commun. 9 4920Google Scholar

    [34]

    Ma F Y, Huang M, Xu Y C, Wu J H 2018 Sci. Rep. 8 5906Google Scholar

    [35]

    Li J F, Shen C, Díaz-Rubio A, Tretyakov S A, Cummer S A 2018 Nat.Commun. 9 1342Google Scholar

    [36]

    Quan L, Ra’di Y, Sounas D L, Alù A 2018 Phys. Rev. Lett. 120 254301Google Scholar

    [37]

    Lu M H, Feng L, Chen Y F 2009 Mater. Today 12 34

    [38]

    Ge H, Yang M, Ma C, Lu M H, Chen Y F, Fang N, Sheng P 2018 Natl. Sci. Rev. 5 159Google Scholar

    [39]

    Yang M, Sheng P 2017 Annu. Rev. Mater. Res. 47 83Google Scholar

    [40]

    Yang M, Meng C, Fu C X, Li Y, Yang Z Y, Sheng P 2015 Appl. Phys. Lett. 107 104104Google Scholar

    [41]

    Ma G C, Yang M, Xiao S W, Yang Z Y, Sheng P 2014 Nat. Mater. 13 873Google Scholar

    [42]

    Jiménez N, Romero-García V, Pagneux V, Groby J P 2017 Phys. Rev. B 95 014205Google Scholar

    [43]

    Jiang X, Liang B, Li R Q, Zou X Y, Yin L L, Cheng J C 2014 Appl. Phys. Lett. 105 243505

    [44]

    Yang M, Chen S Y, Fu C X, Sheng P 2017 Mater. Horiz. 4 673Google Scholar

    [45]

    Ma G C, Sheng P 2016 Sci. Adv. 2 e1501595Google Scholar

    [46]

    Lemoult F, Fink M, Lerosey G 2011 Phys. Rev. Lett. 107 064301Google Scholar

    [47]

    Lemoult F, Kaina N, Fink M, Lerosey G 2013 Nat. Phys. 9 55

    [48]

    Park J J, Park C M, Lee K J B, Lee S H 2015 Appl. Phys. Lett. 106 051901Google Scholar

    [49]

    Ambati M, Fang N, Sun C, Zhang X 2007 Phys. Rev. B 75 195447Google Scholar

    [50]

    Park C M, Park J J, Lee S H, Seo Y M, Kim C K, Lee S H 2011 Phys. Rev. Lett. 107 194301Google Scholar

    [51]

    Zhu J, Christensen J, Jung J, Martin-Moreno L, Yin X, Fok L, Zhang X, Garcia-Vidal F J 2011 Nat. Phys. 7 52

    [52]

    Li J, Fok L, Yin X, Bartal G, Zhang X 2009 Nat. Mater. 8 931Google Scholar

    [53]

    Ma G C, Fan X Y, Ma F Y, de Rosny J, Sheng P, Fink M 2018 Nat. Phys. 14 608Google Scholar

    [54]

    Lanoy M, Pierrat R, Lemoult F, Fink M, Leroy V, Tourin A 2015 Phys. Rev. B 91 224202Google Scholar

    [55]

    Lemoult F, Fink M, Lerosey G 2011 Waves in Random and Complex Media 21 614

    [56]

    Bender C M, Boettcher S 1998 Phys. Rev. Lett. 80 5243Google Scholar

    [57]

    Chong Y D, Ge L, Stone A D 2011 Phys. Rev. Lett. 106 093902Google Scholar

    [58]

    Feng L, Xu Y L, Fegadolli W S, Lu M H, Oliveira J E B, Almeida V R, Chen Y F, Scherer A 2013 Nat. Mater. 12 108

    [59]

    Chang L, Jiang X S, Hua S Y, Yang C, Wen J M, Jiang L, Li G, Wang G Z, Xiao M 2014 Nat. Photon. 8 524Google Scholar

    [60]

    Feng L, Wong Z J, Ma R M, Wang Y, Zhang X 2014 Science 346 972Google Scholar

    [61]

    Zhu X F, Ramezani H, Shi C Z, Zhu J, Zhang X 2014 Phys. Rev. X 4 031042

    [62]

    Shi C Z, Dubois M, Chen Y, Cheng L, Ramezani H, Wang Y, Zhang X 2016 Nat. Commun. 7 11110Google Scholar

    [63]

    Fleury R, Sounas D L, Alù A 2016 IEEE J. Sel. Top. Quant. 22 121Google Scholar

    [64]

    Aurégan Y, Pagneux V 2017 Phys. Rev. Lett. 118 174301Google Scholar

    [65]

    Christensen J, Willatzen M, Velasco V R, Lu M H 2016 Phys. Rev. Lett. 116 207601Google Scholar

    [66]

    Lu M H, Zhang C, Feng L, Zhao J, Chen Y F, Mao Y W, Zi J, Zhu Y Y, Zhu S N, Ming N B 2007 Nat. Mater. 6 744Google Scholar

    [67]

    Lu M H, Liu X K, Feng L, Li J, Huang C P, Chen Y F, Zhu Y Y, Zhu S N, Ming N B 2007 Phys. Rev. Lett. 99 174301Google Scholar

    [68]

    Haldane F D M, Raghu S 2008 Phys. Rev. Lett. 100 013904Google Scholar

    [69]

    Wang Z, Chong Y, Joannopoulos J D, Soljačić M 2009 Nature 461 772Google Scholar

    [70]

    Fleury R, Sounas D L, Sieck C F, Haberman M R, Alù A 2014 Science 343 516Google Scholar

    [71]

    Ni X, He C, Sun X C, Liu X P, Lu M H, Feng L, Chen Y F 2015 New J. Phys. 17 053016Google Scholar

    [72]

    Ding Y J, Peng Y G, Zhu Y F, Fan X D, Yang J, Liang B, Zhu X F, Wan X G, Cheng J C 2019 Phys. Rev. Lett. 122 014302Google Scholar

    [73]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802Google Scholar

    [74]

    König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L, Zhang S C 2007 Science 318 766Google Scholar

    [75]

    He C, Ni X, Ge H, Sun X C, Chen Y B, Lu M H, Liu X P, Chen Y F 2016 Nat. Phys. 12 1124Google Scholar

    [76]

    Yu S Y, He C, Wang Z, Liu F K, Sun X C, Li Z, Lu H Z, Lu M H, Liu X P, Chen Y F 2018 Nat. Commun. 9 3072Google Scholar

    [77]

    Lu J Y, Qiu C Y, Ye L P, Fan X Y, Ke M Z, Zhang F, Liu Z Y 2017 Nat. Phys. 13 369

    [78]

    Wang Z, Yu S Y, Liu F K, Tian Y, Gupta S K, Lu M H, Chen Y F 2018 Appl. Phys. Express 11 107301Google Scholar

    [79]

    Wang Z, Liu F K, Yu S Y, Yan S L, Lu M H, Jing Y, Chen Y F 2019 J. Appl. Phys. 125 044502Google Scholar

    [80]

    He C, Yu S Y, Ge H, Wang H Q, Tian Y, Zhang H J, Sun X C, Chen Y B, Zhou J, Lu M H, Chen Y F 2018 Nat. Commun. 9 4555Google Scholar

    [81]

    Popa B I, Zigoneanu L, Cummer S A 2011 Phys. Rev. Lett. 106 253901Google Scholar

    [82]

    Zigoneanu L, Popa B I, Cummer S A 2014 Nat. Mater. 13 352Google Scholar

    [83]

    Li X F, Ni X, Feng L, Lu M H, He C, Chen Y F 2011 Phys. Rev. Lett. 106 084301Google Scholar

    [84]

    Valentine J, Zhang S, Zentgraf T, Ulin-Avila E, Genov D A, Bartal G, Zhang X 2008 Nature 455 376Google Scholar

    [85]

    Xiao S, Drachev V P, Kildishev A V, Ni X, Chettiar U K, Yuan H-K, Shalaev V M 2010 Nature 466 735Google Scholar

    [86]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977Google Scholar

    [87]

    Watts C M, Liu X, Padilla W J 2012 Adv. Mater. 24 OP98

    [88]

    Berger J B, Wadley H N G, McMeeking R M 2017 Nature 543 533Google Scholar

    [89]

    Frenzel T, Kadic M, Wegener M 2017 Science 358 1072Google Scholar

    [90]

    Han T C, Bai X, Liu D, Gao D L, Li B, Thong J T L, Qiu C W 2015 Sci. Rep. 5 10242Google Scholar

    [91]

    Han T C, Bai X, Thong J T L, Li B W, Qiu C W 2014 Adv. Mater. 26 1731Google Scholar

  • [1] 张孝悦, 徐华锋, 陈婉娜, 周农, 吴宏伟. 基于定向声源的局域型声学斯格明子模式的选择性激发. 物理学报, 2025, 74(5): . doi: 10.7498/aps.74.20241286
    [2] 蒋婧, 王小云, 孔鹏, 赵鹤平, 何兆剑, 邓科. 声学四极子拓扑绝缘体中的位错态. 物理学报, 2024, 73(15): 154302. doi: 10.7498/aps.73.20240640
    [3] 黄泽鑫, 圣宗强, 程乐乐, 曹三祝, 陈华俊, 吴宏伟. 一维非互易声学晶体的非厄米趋肤态操控. 物理学报, 2024, 73(21): 214301. doi: 10.7498/aps.73.20241087
    [4] 杨浩智, 聂梦娇, 马光鹏, 曹慧群, 林丹樱, 屈军乐, 于斌. 基于数字微镜器件的快速超分辨晶格结构光照明显微研究. 物理学报, 2024, 73(9): 098702. doi: 10.7498/aps.73.20240216
    [5] 张孝悦, 徐华锋, 陈婉娜, 周农, 孙文军, 吴宏伟. 基于梯度结构波导实现的定向声学自旋角动量密度操控. 物理学报, 2024, 73(14): 144301. doi: 10.7498/aps.73.20240484
    [6] 凌进中, 郭金坤, 王昱程, 刘鑫, 王晓蕊. 基于倏逝波照明的空间移频超分辨成像技术研究. 物理学报, 2023, 72(22): 224202. doi: 10.7498/aps.72.20230934
    [7] 李荫铭, 孔鹏, 毕仁贵, 何兆剑, 邓科. 双表面周期性弹性声子晶体板中的谷拓扑态. 物理学报, 2022, 71(24): 244302. doi: 10.7498/aps.71.20221292
    [8] 葛阳阳, 何灼奋, 黄黎琳, 林丹樱, 曹慧群, 屈军乐, 于斌. 平场复用多焦点结构光照明超分辨显微成像. 物理学报, 2022, 71(4): 048704. doi: 10.7498/aps.71.20211712
    [9] 葛阳阳, 于斌. 平场复用多焦点结构光照明超分辨显微成像研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211712
    [10] 张佳, SamantaSoham, 王佳林, 王璐玮, 杨志刚, 严伟, 屈军乐. 一种用于线粒体受激辐射损耗超分辨成像的新型探针. 物理学报, 2020, 69(16): 168702. doi: 10.7498/aps.69.20200171
    [11] 耿治国, 彭玉桂, 沈亚西, 赵德刚, 祝雪丰. 手性声子晶体中拓扑声传输. 物理学报, 2019, 68(22): 227802. doi: 10.7498/aps.68.20191007
    [12] 贾鼎, 葛勇, 袁寿其, 孙宏祥. 基于蜂窝晶格声子晶体的双频带声拓扑绝缘体. 物理学报, 2019, 68(22): 224301. doi: 10.7498/aps.68.20190951
    [13] 王健, 吴世巧, 梅军. 二维声子晶体中简单旋转操作导致的拓扑相变. 物理学报, 2017, 66(22): 224301. doi: 10.7498/aps.66.224301
    [14] 陈泽国, 吴莹. 声子晶体中的多重拓扑相. 物理学报, 2017, 66(22): 227804. doi: 10.7498/aps.66.227804
    [15] 杜春阳, 郁殿龙, 刘江伟, 温激鸿. X形超阻尼局域共振声子晶体梁弯曲振动带隙特性. 物理学报, 2017, 66(14): 140701. doi: 10.7498/aps.66.140701
    [16] 林丹樱, 屈军乐. 超分辨成像及超分辨关联显微技术研究进展. 物理学报, 2017, 66(14): 148703. doi: 10.7498/aps.66.148703
    [17] 刘鸿吉, 刘双龙, 牛憨笨, 陈丹妮, 刘伟. 基于环形抽运光的红外超分辨显微成像方法. 物理学报, 2016, 65(23): 233601. doi: 10.7498/aps.65.233601
    [18] 董华锋, 吴福根, 牟中飞, 钟会林. 二维复式声子晶体中基元配置对声学能带结构的影响. 物理学报, 2010, 59(2): 754-758. doi: 10.7498/aps.59.754
    [19] 郝国郡, 傅秀军, 侯志林. 正方点阵上Fibonacci超元胞声子晶体的带结构. 物理学报, 2009, 58(12): 8484-8488. doi: 10.7498/aps.58.8484
    [20] 牟中飞, 吴福根, 张 欣, 钟会林. 超元胞方法研究平移群对称性对声子带隙的影响. 物理学报, 2007, 56(8): 4694-4699. doi: 10.7498/aps.56.4694
计量
  • 文章访问数:  31731
  • PDF下载量:  1862
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-31
  • 修回日期:  2019-07-03
  • 上网日期:  2019-10-01
  • 刊出日期:  2019-10-05

/

返回文章
返回