搜索

x
中国物理学会期刊

基于全保偏光纤结构的主振荡脉冲非线性放大系统

CSTR: 32037.14.aps.68.20190925

Master oscillator pulse nonlinear amplifier system based on all polarization-maintaining fiber

CSTR: 32037.14.aps.68.20190925
PDF
HTML
导出引用
  • 提出了基于全保偏光纤结构的主振荡脉冲非线性放大系统, 该系统由基于半导体可饱和吸收镜锁模的直线型光纤振荡器、二级放大结构脉冲非线性光纤放大器和具有负色散的单模传导光纤的脉冲压缩器构成. 通过此系统获得了中心波长为1560 nm, 重复频率为200 MHz的超短激光脉冲, 脉冲半高全宽为44 fs, 单脉冲能量可达1 nJ. 随后, 使用厚度为1 mm的掺杂氧化镁的周期性极化铌酸锂晶体进行倍频工作. 实验中使用各类波片、准直及聚焦透镜将放大系统输出的脉冲激光聚焦在极化周期为19.8 μm的晶体位置上. 通过合理调整光路并优化准直聚焦参数获得了平均功率为60 mW, 中心波长为779 nm的倍频脉冲激光输出, 转换效率达到30%. 实验结果表明, 基于全保偏光纤结构的主振荡脉冲非线性放大系统可以产生数十飞秒量级特性良好的脉冲激光.

     

    The erbium-doped fiber oscillators, especially mode-locked fiber oscillators for generating femtosecond pulses, cannot meet the requirements for most of modern industrial applications because they are resticted by the low power and the limited wavelength range. In order to solve this problem, lots of efforts have been made both theoretically and experimentally, to improve the chirped pulse amplification (CPA) technology. The emergence of CPA technology greatly enhances the energy of laser pulses. The broadening and compressing of the laser pulses are both always dependent on the improving of spatial optical components, such as grating pairs. However, the use of this kind of method can increase the complexity of the amplification system to a certain extent. This may be an essential reason why more and more researchers pay attention to all fiber amplification system. In this paper, the master oscillator pulse nonlinear amplifier system based on all polarization- maintaining fiber is proposed, which is mainly composed of an oscillator based on the semiconductor saturable absorption mirror and linear cavity, a two-stage amplification and a pulse compressor constructed by a single-mode conductive fiber with anomalous dispersion. Using this system, we obtain ultrashort laser pulses in the 1.5 nm band whose pulse width equals 44 fs and single pulse energy reaches about 1 nJ. The system is not only compact and miniaturized but also stable and reliable due to the all polarization-maintaining fiber. Subsequently, an MgO doped periodically poled lithium niobite crystal with a thickness of 1 mm is used to implement frequency doubling. The pulses from the system are accurately focused on a position where the crystal polarization period is 19.8 μm with help of some wave plates and lenses. Adjusting the optical path reasonably and optimizing colliminated focusing parameters, the double-frequency pulse output with certral wavelength of 779 nm and average power of 60 W is obtained, in which the conversion efficiency reaches 30%. The result shows that the master oscillator pulse nonlinear amplifier system based on all polarization maintaining fiber can produce satisfactory ultrashort pulses. It is a new idea for generating the ultrashort femtosecond pulses in the near-infrared band.

     

    目录

    /

    返回文章
    返回