搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铟掺杂钨位增强钨酸铋氧空位光催化效率

王泽普 付念 于涵 徐晶威 何祺 郑树凯 丁帮福 闫小兵

引用本文:
Citation:

铟掺杂钨位增强钨酸铋氧空位光催化效率

王泽普, 付念, 于涵, 徐晶威, 何祺, 郑树凯, 丁帮福, 闫小兵

Enhancing oxygen vacancy photocatalytic efficiency of bismuth tungstate using In-doped W site

Wang Ze-Pu, Fu Nian, Yu Han, Xu Jing-Wei, He Qi, Zheng Shu-Kai, Ding Bang-Fu, Yan Xiao-Bing
PDF
HTML
导出引用
  • 以硝酸铋、硝酸铟、钨酸铵、柠檬酸、聚乙二醇为原料和表面活性剂, 通过溶胶-凝胶法合成纯的和铟掺杂正交晶系钨酸铋. X射线衍射表征得到所有样品都是纯相且无杂质相. 光催化降解罗丹明B实验发现, 铟掺杂样品降解能力高于纯相, 其最佳掺杂含量为7%摩尔比. 扫描电子显微镜和X射线光电子能谱表征发现, 光催化性能提高主要是由于氧空位数目增多导致, 而形貌发生蓬松改变起到促进作用. 利用第一性原理计算, 单一氧空位模型形成能小于Bi1In + VO和Bi2In + VO共掺杂模型形成能, 而大于WIn + VO形成能. 这个结果表示铟替代钨位促进氧空位产生. 电子结构计算发现, 氧空位在带隙和导带底附近引入新的局域态, 促进光吸收而增强光催化性能. 本文通过理论模拟和实验表征钨酸铋氧空位光催化性能调控归因于铟进入钨位而非铋位.
    Pure and In-doped orthorhombic Bi2WO6 are synthesized by sol-gel method through using raw materials Bi(NO3)3·5H2O, In(NO3)3·6H2O, (NH4)2WO4 and surfactants citric acid, polyethylene glycol. All samples are in pure phase without impurity phase as indicated by X-ray diffraction characterization. The In-doped sample degradation efficiency for rhodamine B is higher than that for pure phase with the optimal content 7% mole ratio. Because indium impurity adhering to Bi2WO6 nucleus surface may affect the crystallization range, the sample morphology gradually becomes fluffy and regular, which is reveled through scanning electron microscopy analysis. This morphology change plays an important role in electron-hole transport process as well as contact area of carrier and organic molecule. Using X-ray photoelectron spectroscopy (XPS) characterization and Gaussian fitting, it is found that the O 1s XPS peak of pure and In-doped sample each contain three peak sites. The low energy peak around 530 eV originates from W—O and Bi—O bond. The high peak is ascribed to lattice oxygen defect and its intensity is enhanced gradually with the increase of In content. Thus the increase of oxygen vacancies is the main reason for this photocatalytic performance improvement. Comparing with the impurity-free sample, the visible absorption of In-doped Bi2WO6 is enhanced and the corresponding band gap slightly decreases, which is indicated by diffraction reflection spectroscopy measurement. The reduction of forbidden band width further enhances the photocatalytic performance. After configuration relaxation and self-consistence calculation, the formation energy obtained from a single oxygen vacancy model is less than those from the Bi1In + VO and the Bi2In + VO co-doping models, and greater than the WIn + VO formation energy. This result indicates that indium replacing W site can promote the generating of oxygen vacancies. The calculation of the 18%-hybridization function electronic structure shows that the Bi2WO6 has indirect band gap semi-conduction with energy gap 2.76 eV, which is consistent with the experimental value 2.79 eV. A series of new local states appears in the band gap and near conduction band bottom based on the oxygen vacancy model. These local states promote light absorption and enhance photocatalytic performance. In conclusion, the enhanced photocatalytic performance of Bi2WO6 is attributed to the indium entering into the tungsten site rather than the bismuth site as indicated by the experimental and theoretical result.
      通信作者: 郑树凯, zhshk@126.com ; 丁帮福, dbf1982@126.com
    • 基金项目: 河北省高等学校科学技术研究项目(批准号: ZD2017008)、河北大学高层次人才基金(批准号: 521000981118)和国家自然科学基金(批准号: 61674050)资助的课题
      Corresponding author: Zheng Shu-Kai, zhshk@126.com ; Ding Bang-Fu, dbf1982@126.com
    • Funds: Project supported by the Science and Technology Research Project of Hebei Higher Education Institution, China (Grant No. ZD2017008), the High-level Talents Funds of Hebei University, China (Grant No. 521000981118), and the National Natural Science Foundation of China (Grant No. 61674050)
    [1]

    Ait Ahsaine H, Ezahri M, Benlhachemi A, Bakiz B, Villain S, Guinneton F, Gavarri J R 2016 Ceram. Int. 42 8552Google Scholar

    [2]

    Ait Ahsaine H, El Jaouhari A, Slassi A, Ezahri M, Benlhachemi A, Bakiz B, Guinnetonc F, Gavarric J R 2016 RSC Adv. 6 101105Google Scholar

    [3]

    Song X C, Zheng Y F, Ma R, Zhang Y Y, Yin H Y 2011 J. Hazard. Mater. 192 186

    [4]

    盛珈怡, 李晓金, 许宜铭 2014 物理化学学报 30 508Google Scholar

    Sheng J Y, Li X J, Xu Y M 2014 Acta Phys. Chim. Sin. 30 508Google Scholar

    [5]

    Wang J J, Tang L, Zeng G G, Liu Y N, Zhou Y Y, Deng Y C, Wang J J, Peng B 2017 ACS Sustainable Chem. Eng. 5 1062Google Scholar

    [6]

    Kong X Y, Choo Y Y, Chai S P, Soh A K, Mohamedc A R 2016 Chem. Commun. 52 14242Google Scholar

    [7]

    卢青, 华罗光, 陈亦琳, 高碧芬, 林碧洲 2015 无机材料学报 30 413

    Lu Q, Hua L G, Chen Y L, Gao B F, Lin B Z 2015 J. Inorg. Mater. 30 413

    [8]

    许雪棠, 王凡, 黄恒俊, 季璐璐, 蒙晶棉, 邓鸿骥 2017 中国专利 CN 106390992 A

    Xu X T, Wang F, Huang H J, Ji L L, Meng J M, Deng H J 2017 Chinese Patent CN 106390992 A (in Chinese)

    [9]

    Lü Y H, Yao W Q, Zong R L, Zhu Y F 2016 Sci. Rep. 6 19347Google Scholar

    [10]

    Liu Y, Wei B, Xu L L, Gao H, Zhang M Y 2015 Chem. Cat. Chem. 7 4076

    [11]

    Gu H, Ding J, Zhong Q, Zeng Y Q, Song F J 2019 Inter. J. Hydrogen. Energ. 44 11808Google Scholar

    [12]

    郝亮, 张慧娜, 闫建成, 程丽君, 关苏军, 鲁云 2018 天津科技大学学报 33 1

    Hao L, Zhang H N, Yan J C, Cheng L J, Guan S J, Lu Y 2018 J. Tianjin Univ. Sci. Tech. 33 1

    [13]

    Zhang Z J, Wang W Z, Gao E P, Shang M, Xu J H 2011 J. Hazard. Mater. 196 255Google Scholar

    [14]

    Tan G Q, Huang J, Zhang L L, Ren H J, Xia A 2014 Ceram. Inter. 40 11671Google Scholar

    [15]

    Ding B F, Han C, Zheng L R, Zhang J Y, Wang R M, Tang Z L 2015 Sci. Rep. 5 9443Google Scholar

    [16]

    Shannon R D 1976 Acta Cryst. A 32 751Google Scholar

    [17]

    李洪全, 郑树凯, 丁帮福, 闫小兵 2018 中国粉体技术 24 19

    Li H Q, Zheng S K, Ding B F, Yan X B 2018 Chin. Powder. Sci. Tech. 24 19

    [18]

    Nie Z P, Ma D K, Fang G Y, Chen W, Huang S M 2016 J. Mater. Chem. A 4 2438Google Scholar

    [19]

    Zhou Y, Tian Z P, Zhao Z Y, Liu Q, Kou J H, Chen X Y, Gao J, Yin S C, Zou Z G 2011 ACS Appl. Mater. Interface 3 3594

    [20]

    王亚军, 于海洋, 李泽雪, 郭梁 2018 材料研究学报 32 149Google Scholar

    Wang Y J, Yu H Y, Li Z X, Guo L 2018 Chin. J. Mater. Res. 32 149Google Scholar

  • 图 1  溶胶-凝胶法制备钨酸铋粉体实验流程图

    Fig. 1.  Schematic diagram of sol-gel method for bismuth tungstate powder preparation.

    图 2  ICSD模拟和不同浓度铟掺杂钨酸铋XRD图谱(a)和优化完正交钨酸铋结构模型(b)

    Fig. 2.  XRD patterns of the ICSD simulation and different concentration In-doped bismuth tungstate (a), as well as optimized orthogonal bismuth tungstate structure model (b).

    图 3  样品微观形貌结构图 (a)纯相, (b) 5 at%, (c) 7 at%, (d) 10 at% In-Bi2WO6

    Fig. 3.  Microscopic morphology of samples: (a) Pure phase, (b) 5 at%, (c) 7 at%, and (d) 10 at% In-Bi2WO6

    图 4  不同铟掺杂钨酸铋的降解效率(a)和一级反应速率常数柱状图(b)

    Fig. 4.  Degradation efficiency of In-doped bismuth tungstate (a) and the first-order reaction rate constant (b).

    图 5  纯相(a)和7%铟掺杂(b) Bi2WO6的O 1 s XPS光谱以及Gaussian分峰

    Fig. 5.  O1 s XPS spectra and Gaussian peaks of pure phase (a) and 7% In-doped Bi2WO6 (b).

    图 6  纯的和7 at%铟掺杂样品的漫反射光谱(a)和K-M方程拟合的带隙值(b)

    Fig. 6.  Diffuse reflectance spectra of pure and 7 at% In-doped samples (a) and band gap values fitted by K-M equation (b).

    图 7  (a)四种模型结构示意图及其(b)相应形成能变化趋势

    Fig. 7.  Schematic diagram of four model structures (a) and corresponding formation energy variation (b).

    图 8  纯相(a), (b)和单一氧空位(c), (d)模型电子结构 (a), (c) 能带图; (b), (d) 态密度图

    Fig. 8.  Pure phase (a), (b) and single oxygen vacancy (c), (d) model electronic structure: (a), (c) Energy band diagram; (b), (d) density of states (DOS).

  • [1]

    Ait Ahsaine H, Ezahri M, Benlhachemi A, Bakiz B, Villain S, Guinneton F, Gavarri J R 2016 Ceram. Int. 42 8552Google Scholar

    [2]

    Ait Ahsaine H, El Jaouhari A, Slassi A, Ezahri M, Benlhachemi A, Bakiz B, Guinnetonc F, Gavarric J R 2016 RSC Adv. 6 101105Google Scholar

    [3]

    Song X C, Zheng Y F, Ma R, Zhang Y Y, Yin H Y 2011 J. Hazard. Mater. 192 186

    [4]

    盛珈怡, 李晓金, 许宜铭 2014 物理化学学报 30 508Google Scholar

    Sheng J Y, Li X J, Xu Y M 2014 Acta Phys. Chim. Sin. 30 508Google Scholar

    [5]

    Wang J J, Tang L, Zeng G G, Liu Y N, Zhou Y Y, Deng Y C, Wang J J, Peng B 2017 ACS Sustainable Chem. Eng. 5 1062Google Scholar

    [6]

    Kong X Y, Choo Y Y, Chai S P, Soh A K, Mohamedc A R 2016 Chem. Commun. 52 14242Google Scholar

    [7]

    卢青, 华罗光, 陈亦琳, 高碧芬, 林碧洲 2015 无机材料学报 30 413

    Lu Q, Hua L G, Chen Y L, Gao B F, Lin B Z 2015 J. Inorg. Mater. 30 413

    [8]

    许雪棠, 王凡, 黄恒俊, 季璐璐, 蒙晶棉, 邓鸿骥 2017 中国专利 CN 106390992 A

    Xu X T, Wang F, Huang H J, Ji L L, Meng J M, Deng H J 2017 Chinese Patent CN 106390992 A (in Chinese)

    [9]

    Lü Y H, Yao W Q, Zong R L, Zhu Y F 2016 Sci. Rep. 6 19347Google Scholar

    [10]

    Liu Y, Wei B, Xu L L, Gao H, Zhang M Y 2015 Chem. Cat. Chem. 7 4076

    [11]

    Gu H, Ding J, Zhong Q, Zeng Y Q, Song F J 2019 Inter. J. Hydrogen. Energ. 44 11808Google Scholar

    [12]

    郝亮, 张慧娜, 闫建成, 程丽君, 关苏军, 鲁云 2018 天津科技大学学报 33 1

    Hao L, Zhang H N, Yan J C, Cheng L J, Guan S J, Lu Y 2018 J. Tianjin Univ. Sci. Tech. 33 1

    [13]

    Zhang Z J, Wang W Z, Gao E P, Shang M, Xu J H 2011 J. Hazard. Mater. 196 255Google Scholar

    [14]

    Tan G Q, Huang J, Zhang L L, Ren H J, Xia A 2014 Ceram. Inter. 40 11671Google Scholar

    [15]

    Ding B F, Han C, Zheng L R, Zhang J Y, Wang R M, Tang Z L 2015 Sci. Rep. 5 9443Google Scholar

    [16]

    Shannon R D 1976 Acta Cryst. A 32 751Google Scholar

    [17]

    李洪全, 郑树凯, 丁帮福, 闫小兵 2018 中国粉体技术 24 19

    Li H Q, Zheng S K, Ding B F, Yan X B 2018 Chin. Powder. Sci. Tech. 24 19

    [18]

    Nie Z P, Ma D K, Fang G Y, Chen W, Huang S M 2016 J. Mater. Chem. A 4 2438Google Scholar

    [19]

    Zhou Y, Tian Z P, Zhao Z Y, Liu Q, Kou J H, Chen X Y, Gao J, Yin S C, Zou Z G 2011 ACS Appl. Mater. Interface 3 3594

    [20]

    王亚军, 于海洋, 李泽雪, 郭梁 2018 材料研究学报 32 149Google Scholar

    Wang Y J, Yu H Y, Li Z X, Guo L 2018 Chin. J. Mater. Res. 32 149Google Scholar

  • [1] 史晓红, 侯滨朋, 李祗烁, 陈京金, 师小文, 朱梓忠. 锂离子电池富锂锰基三元材料中氧空位簇的形成: 第一原理计算. 物理学报, 2023, 72(7): 078201. doi: 10.7498/aps.72.20222300
    [2] 史晓红, 陈京金, 曹昕睿, 吴顺情, 朱梓忠. 富锂锰基三元材料Li1.167Ni0.167Co0.167Mn0.5O2中的氧空位形成. 物理学报, 2022, 71(17): 178202. doi: 10.7498/aps.71.20220274
    [3] 王志青, 姚晓萍, 沈杰, 周静, 陈文, 吴智. 锆钛酸铅薄膜的铁电疲劳微观机理及其耐疲劳性增强. 物理学报, 2021, 70(14): 146302. doi: 10.7498/aps.70.20202196
    [4] 林洪斌, 林春, 陈越, 钟克华, 张健敏, 许桂贵, 黄志高. 第一性原理研究Mg掺杂对LiCoO2正极材料结构稳定性及其电子结构的影响. 物理学报, 2021, 70(13): 138201. doi: 10.7498/aps.70.20210064
    [5] 张梅玲, 陈玉红, 张材荣, 李公平. 内在缺陷与Cu掺杂共存对ZnO电磁光学性质影响的第一性原理研究. 物理学报, 2019, 68(8): 087101. doi: 10.7498/aps.68.20182238
    [6] 陈东运, 高明, 李拥华, 徐飞, 赵磊, 马忠权. MoO3/Si界面区钼掺杂非晶氧化硅层形成的第一性原理研究. 物理学报, 2019, 68(10): 103101. doi: 10.7498/aps.68.20190067
    [7] 莫曼, 曾纪术, 何浩, 张喨, 杜龙, 方志杰. Be, Mg, Mn掺杂CuInO2形成能的第一性原理研究. 物理学报, 2019, 68(10): 106102. doi: 10.7498/aps.68.20182255
    [8] 汤卉, 唐新桂, 蒋艳平, 刘秋香, 李文华. 铌酸锶钡陶瓷中氧空位对离子电导率和弛豫现象的影响. 物理学报, 2019, 68(22): 227701. doi: 10.7498/aps.68.20190562
    [9] 蒋然, 杜翔浩, 韩祖银, 孙维登. Ti/HfO2/Pt阻变存储单元中的氧空位聚簇分布. 物理学报, 2015, 64(20): 207302. doi: 10.7498/aps.64.207302
    [10] 蒋先伟, 代广珍, 鲁世斌, 汪家余, 代月花, 陈军宁. Al掺杂对HfO2俘获层可靠性影响第一性原理研究. 物理学报, 2015, 64(9): 091301. doi: 10.7498/aps.64.091301
    [11] 李宗宝, 王霞, 樊帅伟. Cu/N表面沉积共掺杂TiO2光催化剂作用机理的理论研究. 物理学报, 2014, 63(15): 157102. doi: 10.7498/aps.63.157102
    [12] 张伟, 徐朝鹏, 王海燕, 陈飞鸿, 何畅. 碘化铟晶体本征缺陷的第一性原理研究. 物理学报, 2013, 62(24): 243101. doi: 10.7498/aps.62.243101
    [13] 龚宇, 陈柏桦, 熊亮萍, 古梅, 熊洁, 高小铃, 罗阳明, 胡胜, 王育华. 氧空位对Eu2+, Dy3+掺杂的Ca5MgSi3O12发光及余辉性能的影响. 物理学报, 2013, 62(15): 153201. doi: 10.7498/aps.62.153201
    [14] 沈庆鹤, 高志伟, 丁怀义, 张光辉, 潘楠, 王晓平. Ga掺杂对ZnO纳米结构可见光发射的抑制效应. 物理学报, 2012, 61(16): 167105. doi: 10.7498/aps.61.167105
    [15] 唐冬华, 薛林, 孙立忠, 钟建新. B在Hg0.75Cd0.25Te中掺杂效应的第一性原理研究. 物理学报, 2012, 61(2): 027102. doi: 10.7498/aps.61.027102
    [16] 孙运斌, 张向群, 李国科, 杨海涛, 成昭华. 氧空位对Co掺杂TiO2稀磁半导体中杂质分布和磁交换的影响. 物理学报, 2012, 61(2): 027503. doi: 10.7498/aps.61.027503
    [17] 刘显坤, 刘颖, 钱达志, 郑洲. He原子掺杂铝材料的第一性原理研究. 物理学报, 2010, 59(9): 6450-6456. doi: 10.7498/aps.59.6450
    [18] 李虹, 王绍青, 叶恒强. Nb掺杂对γ-TiAl抗氧化能力影响的第一性原理研究. 物理学报, 2009, 58(13): 224-S229. doi: 10.7498/aps.58.224
    [19] 李宝山, 朱志刚, 李国荣, 殷庆瑞, 丁爱丽. 铌锰锆钛酸铅铁电陶瓷电滞回线的温度和频率响应. 物理学报, 2005, 54(2): 939-943. doi: 10.7498/aps.54.939
    [20] 姚明珍, 顾 牡. 钨酸铅晶体中与氧空位相关的色心研究. 物理学报, 2003, 52(2): 459-462. doi: 10.7498/aps.52.459
计量
  • 文章访问数:  11972
  • PDF下载量:  144
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-01
  • 修回日期:  2019-08-06
  • 上网日期:  2019-11-01
  • 刊出日期:  2019-11-05

/

返回文章
返回