搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于空间角度复用和双随机相位的多图像光学加密方法

王雪光 李明 于娜娜 席思星 王晓雷 郎利影

引用本文:
Citation:

基于空间角度复用和双随机相位的多图像光学加密方法

王雪光, 李明, 于娜娜, 席思星, 王晓雷, 郎利影

Multiple-image encryption method based on spatial angle multiplexing and double random phase encoding

Wang Xue-Guang, Li Ming, Yu Na-Na, Xi Si-Xing, Wang Xiao-Lei, Lang Li-Ying
PDF
HTML
导出引用
  • 提出了基于空间角度复用和双随机相位的多图像光学加密新方法. 加密过程中, 首先将原始图像进行随机相位调制和不同距离的菲涅耳衍射; 其次, 将携带调制后图像的参考光与携带随机相位且具有不同立体角的参考光相干叠加, 产生干涉条纹; 最后, 将不同方向的干涉条纹叠加形成复合加密图像. 解密为加密的逆过程, 将复合加密图像置于空间滤波和菲涅耳衍射系统中, 经过不同相位密钥解调和正确距离的菲涅耳衍射完成解密, 得到多幅解密图像. 该方法可以同时对多幅图像进行高效的加密, 计算简单、安全可靠、抗噪声能力强. 利用相关系数评估了该方法的加密效果, 并通过仿真实验验证了该方法的有效性和安全性.
    An optical encryption method of multiple-image based on spatial angle multiplexing and double random phase encoding is proposed in this paper. In the encryption process, firstly the original images are modulated by random phase in Fresnel transform with different diffraction distances. Secondly, the modulated images are coherently superposed with reference beams which have different spatial angles and random phases, to generate interference fringes. Finally, the interference fringes from different directions are superposed to form a compound encrypted image. In the decryption process, the compound image is placed in a spatial filtering and Fresnel diffraction system, and the decrypted images are obtained after implementing the different phase keys’ demodulation and Fresnel diffraction with correct distance. This method encrypts multiple images into a single gray-scale image, which is easy to save and transmit. The double random phases are placed in object light and reference light respectively, which reduces the complexity of the encryption system and overcomes the difficulty of pixel-by-pixel alignment of random phase keys in traditional decryption experiment. At the same time, the multiplexing capacity of the proposed encryption system is analyzed, and the result shows that the system has sufficient encryption capacity. So the proposed method possesses the characteristics of high storage efficiency, simple calculation and strong anti-noise ability, and thus can encrypt multiple images simultaneously. In this paper, the encryption effect is evaluated by correlation coefficient, while the effectiveness and security are verified by simulation experiment.
      通信作者: 席思星, xisixing@126.com
    • 基金项目: 国家自然科学基金(批准号: 11904073, 61875093)和河北省自然科学基金(批准号: F2019402351, F2018402285)资助的课题
      Corresponding author: Xi Si-Xing, xisixing@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11904073, 61875093) and the Natural Science Foundation of Hebei Province, China (Grant Nos. F2019402351, F2018402285)
    [1]

    Refregier P, Javidi B 1995 Opt. Lett. 20 767Google Scholar

    [2]

    Liu Z, Chen H, Blondel W, Shen Z, Liu S 2018 Opt. Lasers Eng. 105 1

    [3]

    Chen L, Zhao D 2006 Opt. Express 14 8552Google Scholar

    [4]

    Zhao D, Li X, Chen L 2008 Opt. Commun. 281 5326

    [5]

    Xu S J, Wang J Z, Yang S X 2008 Chin. Phys. B 17 4027Google Scholar

    [6]

    Borujeni S E, Eshghi M 2013 J. Telecommun. Syst. 52 525

    [7]

    Toto-Arellano N, Rodriguez-Zurita G, Meneses-Fabian C, Vazquez-Castillo J 2008 Opt. Express 16 19330Google Scholar

    [8]

    Nomura T, Javidi B 2000 Opt. Eng. 39 2031Google Scholar

    [9]

    Shi Y S, Li T, Wang Y L, Gao Q K, Zhang S G, Li H F 2013 Opt. Lett. 38 1425Google Scholar

    [10]

    Gopinathan U, Naughton T, Sheridan J 2006 Appl. Opt. 45 5693Google Scholar

    [11]

    Javidi B, Nomura T 2000 Opt. Lett. 25 28Google Scholar

    [12]

    席思星, 于娜娜, 王晓雷, 朱巧芬, 董昭, 王微, 刘秀红, 王华英 2019 物理学报 68 110502Google Scholar

    Xi S X, Yu N N, Wang X L, Zhu Q F, Dong Z, Wang W, Liu X H, Wang H Y 2019 Acta. Phys. Sin. 68 110502Google Scholar

    [13]

    Li X, Meng X, Yang X, Wang Y, Yin Y, Peng X, He W, Dong G, Chen H 2018 Opt. Lasers Eng. 102 106

    [14]

    Xiao D, Li X, Liu S, Wang Q 2018 Opt. Commun. 410 488Google Scholar

    [15]

    Shao Z, Shu H, Wu J, Dong Z, Coatrieux G 2014 Opt. Express 22 4932Google Scholar

    [16]

    Situ G, Zhang J 2005 Opt. Lett. 30 1306Google Scholar

    [17]

    Xu D, Lu M, Jia C, Hu Z 2017 J. Russ. Laser Res. 38 285Google Scholar

    [18]

    Deepan B, Quan C, Wang Y, Tay C 2014 Appl. Opt. 53 4539Google Scholar

    [19]

    Tang Z, Song J, Zhang X 2016 Opt. Lasers Eng. 80 1

    [20]

    Kong D, Shen X, Xu Q, Wang X, Guo H 2013 Appl. Opt. 52 2619Google Scholar

    [21]

    Javidi B, Carnicer A, Yamaguchi M, Nomura T, Pérez-Cabré E, Millán M S, Nishchal N K, Torroba R, Barrera J F, He W, Peng X, Stern A, Rivenson Y, Alfalou A, Brosseau C, Guo C, Sheridan J T, Situ G, Naruse M, Matsumoto T, Juvells L, Tajahuerce E, Lancis J, Chen W, Chen X, Pinkse P W, Mosk A P, Markman A 2016 J. Opt. 18 083001Google Scholar

  • 图 1  多图像光学加密系统(SLM是空间光调制器, $f$是透镜焦距, ${z_i}$是菲涅耳衍射距离, $R(\theta )$表示CCD旋转后与x轴的夹角, ${\alpha _i}$是物光O与参考光R的夹角)

    Fig. 1.  Optical setup of multiple-image encryption process. SLM is spatial light modulator, $f$ is focal length, ${z_i}$ is the distance of Fresnel diffraction, $R(\theta )$ is the rotation angle of CCD, ${\alpha _i}$ is angle between object light O and reference light R.

    图 2  (a)−(h) 8幅待加密图像

    Fig. 2.  (a)−(h) Multiple-image to be encrypted.

    图 3  (a)—(h)8幅原始图像对应的加密干涉条纹

    Fig. 3.  (a)-(h) Encrypted interference fringes corresponding to 8 original images.

    图 4  加密结果图

    Fig. 4.  Encrypted image.

    图 5  多图像解密系统

    Fig. 5.  Decryption system of multiple-image.

    图 6  (a) $p_2^* $为解密密钥时频谱图, 其中F1—F8为相应的滤波器; (b) ${p_2}$为解密密钥时频谱图

    Fig. 6.  (a) Decrypted spectrum with right key $p_2^ * $, where F1-F8 are filters; (b) decrypted spectrum with key ${p_2}$.

    图 7  (a)—(h) 8个图像的正确密钥解密结果

    Fig. 7.  (a)-(h) 8 Decrypted images with all right keys.

    图 8  (a)随机相位密钥$p_2^ * $错误时原始图“A”解密结果; (a')随机相位密钥$p_2^ * $错误且无滤波器时原始图“A”解密结果; (b)随机相位密钥$p_2^ * $错误时原始图“光”解密结果; (b')随机相位密钥$p_2^ * $错误且无滤波器时原始图“光”解密结果

    Fig. 8.  Decrypted results with wrong key $p_2^ * $: (a) For original image “A”; (a') for original image “A” without filter; (b) for original image “光”; (b') for original image “光” without filter.

    图 9  (a)波长$\lambda = 633$ nm其他密钥正确时原始图“B”的解密图像; (b)原始图“学”的解密图像

    Fig. 9.  Decrypted results with wrong key $\lambda = 633$ nm: (a) For original image “B”; (b) for original image “学”.

    图 10  ${p_1}$的动态范围为${\text{0—π}}$时原始图“息”的CC随菲涅耳衍射距离${z_8}$的变化

    Fig. 10.  The $CC$ dependence on ${z_8}$ when the dynamic range of ${p_1}$ is 0-π.

    图 11  ${p_1}$的动态范围为${\text{0—1.5π}}$时原始图“息”的$CC$随菲涅耳衍射距离${z_8}$的变化

    Fig. 11.  The $CC$ dependence on ${z_8}$ when the dynamic range of ${p_1}$ is 0-1.5π.

  • [1]

    Refregier P, Javidi B 1995 Opt. Lett. 20 767Google Scholar

    [2]

    Liu Z, Chen H, Blondel W, Shen Z, Liu S 2018 Opt. Lasers Eng. 105 1

    [3]

    Chen L, Zhao D 2006 Opt. Express 14 8552Google Scholar

    [4]

    Zhao D, Li X, Chen L 2008 Opt. Commun. 281 5326

    [5]

    Xu S J, Wang J Z, Yang S X 2008 Chin. Phys. B 17 4027Google Scholar

    [6]

    Borujeni S E, Eshghi M 2013 J. Telecommun. Syst. 52 525

    [7]

    Toto-Arellano N, Rodriguez-Zurita G, Meneses-Fabian C, Vazquez-Castillo J 2008 Opt. Express 16 19330Google Scholar

    [8]

    Nomura T, Javidi B 2000 Opt. Eng. 39 2031Google Scholar

    [9]

    Shi Y S, Li T, Wang Y L, Gao Q K, Zhang S G, Li H F 2013 Opt. Lett. 38 1425Google Scholar

    [10]

    Gopinathan U, Naughton T, Sheridan J 2006 Appl. Opt. 45 5693Google Scholar

    [11]

    Javidi B, Nomura T 2000 Opt. Lett. 25 28Google Scholar

    [12]

    席思星, 于娜娜, 王晓雷, 朱巧芬, 董昭, 王微, 刘秀红, 王华英 2019 物理学报 68 110502Google Scholar

    Xi S X, Yu N N, Wang X L, Zhu Q F, Dong Z, Wang W, Liu X H, Wang H Y 2019 Acta. Phys. Sin. 68 110502Google Scholar

    [13]

    Li X, Meng X, Yang X, Wang Y, Yin Y, Peng X, He W, Dong G, Chen H 2018 Opt. Lasers Eng. 102 106

    [14]

    Xiao D, Li X, Liu S, Wang Q 2018 Opt. Commun. 410 488Google Scholar

    [15]

    Shao Z, Shu H, Wu J, Dong Z, Coatrieux G 2014 Opt. Express 22 4932Google Scholar

    [16]

    Situ G, Zhang J 2005 Opt. Lett. 30 1306Google Scholar

    [17]

    Xu D, Lu M, Jia C, Hu Z 2017 J. Russ. Laser Res. 38 285Google Scholar

    [18]

    Deepan B, Quan C, Wang Y, Tay C 2014 Appl. Opt. 53 4539Google Scholar

    [19]

    Tang Z, Song J, Zhang X 2016 Opt. Lasers Eng. 80 1

    [20]

    Kong D, Shen X, Xu Q, Wang X, Guo H 2013 Appl. Opt. 52 2619Google Scholar

    [21]

    Javidi B, Carnicer A, Yamaguchi M, Nomura T, Pérez-Cabré E, Millán M S, Nishchal N K, Torroba R, Barrera J F, He W, Peng X, Stern A, Rivenson Y, Alfalou A, Brosseau C, Guo C, Sheridan J T, Situ G, Naruse M, Matsumoto T, Juvells L, Tajahuerce E, Lancis J, Chen W, Chen X, Pinkse P W, Mosk A P, Markman A 2016 J. Opt. 18 083001Google Scholar

  • [1] 钟志, 赵婉婷, 单明广, 刘磊. 远心同-离轴混合数字全息高分辨率重建方法. 物理学报, 2021, 70(15): 154202. doi: 10.7498/aps.70.20210190
    [2] 庄志本, 李军, 刘静漪, 陈世强. 基于新的五维多环多翼超混沌系统的图像加密算法. 物理学报, 2020, 69(4): 040502. doi: 10.7498/aps.69.20191342
    [3] 张益溢, 吴佳琛, 郝然, 金尚忠, 曹良才. 基于数字全息的血红细胞显微成像技术. 物理学报, 2020, 69(16): 164201. doi: 10.7498/aps.69.20200357
    [4] 席思星, 于娜娜, 王晓雷, 朱巧芬, 董昭, 王微, 刘秀红, 王华英. 基于计算全息和θ调制的彩色图像加密方法. 物理学报, 2019, 68(11): 110502. doi: 10.7498/aps.68.20182264
    [5] 王仁德, 张亚萍, 祝旭锋, 王帆, 李重光, 张永安, 许蔚. 基于光学扫描全息密码术的多图像并行加密. 物理学报, 2019, 68(11): 114202. doi: 10.7498/aps.68.20190162
    [6] 谢静, 张军勇, 岳阳, 张艳丽. 卢卡斯光子筛的聚焦特性研究. 物理学报, 2018, 67(10): 104201. doi: 10.7498/aps.67.20172260
    [7] 周宏强, 万玉红, 满天龙. 基于位相变更的非相干数字全息自适应成像. 物理学报, 2018, 67(4): 044202. doi: 10.7498/aps.67.20172202
    [8] 谷婷婷, 黄素娟, 闫成, 缪庄, 常征, 王廷云. 基于数字全息图的光纤折射率测量研究. 物理学报, 2015, 64(6): 064204. doi: 10.7498/aps.64.064204
    [9] 王林, 袁操今, 聂守平, 李重光, 张慧力, 赵应春, 张秀英, 冯少彤. 数字全息术测定涡旋光束拓扑电荷数. 物理学报, 2014, 63(24): 244202. doi: 10.7498/aps.63.244202
    [10] 王大勇, 王云新, 郭莎, 戎路, 张亦卓. 基于多角度无透镜傅里叶变换数字全息的散斑噪声抑制成像研究. 物理学报, 2014, 63(15): 154205. doi: 10.7498/aps.63.154205
    [11] 徐宁, 陈雪莲, 杨庚. 基于改进后多维数据加密系统的多图像光学加密算法的研究. 物理学报, 2013, 62(8): 084202. doi: 10.7498/aps.62.084202
    [12] 卢明峰, 吴坚, 郑明. 数字全息周期像的产生机理及在抑制零级衍射上的应用. 物理学报, 2013, 62(9): 094207. doi: 10.7498/aps.62.094207
    [13] 李俊昌, 楼宇丽, 桂进斌, 彭祖杰, 宋庆和. 数字全息图取样模型的简化研究. 物理学报, 2013, 62(12): 124203. doi: 10.7498/aps.62.124203
    [14] 马骏, 袁操今, 冯少彤, 聂守平. 基于数字全息及复用技术的全场偏振态测试方法. 物理学报, 2013, 62(22): 224204. doi: 10.7498/aps.62.224204
    [15] 陈萍, 唐志列, 王娟, 付晓娣, 陈飞虎. 用Stokes参量法实现数字同轴偏振全息的研究. 物理学报, 2012, 61(10): 104202. doi: 10.7498/aps.61.104202
    [16] 李俊昌. 数字全息重建图像的焦深研究. 物理学报, 2012, 61(13): 134203. doi: 10.7498/aps.61.134203
    [17] 崔华坤, 王大勇, 王云新, 刘长庚, 赵洁, 李艳. 无透镜傅里叶变换数字全息术中非共面误差的自动补偿算法. 物理学报, 2011, 60(4): 044201. doi: 10.7498/aps.60.044201
    [18] 徐先锋, 韩立立, 袁红光. 两步相移数字全息物光重建误差分析与校正. 物理学报, 2011, 60(8): 084206. doi: 10.7498/aps.60.084206
    [19] 李俊昌, 张亚萍, 许蔚. 高质量数字全息波面重建系统研究. 物理学报, 2009, 58(8): 5385-5391. doi: 10.7498/aps.58.5385
    [20] 申金媛, 李现国, 常胜江, 张延炘. 相位特征在三维物体识别中的应用. 物理学报, 2005, 54(11): 5157-5163. doi: 10.7498/aps.54.5157
计量
  • 文章访问数:  7947
  • PDF下载量:  126
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-08
  • 修回日期:  2019-10-08
  • 上网日期:  2019-11-28
  • 刊出日期:  2019-12-01

/

返回文章
返回