搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

参考系波动下的参考系无关测量设备无关量子密钥分发协议

谷文苑 赵尚弘 东晨 王星宇 杨鼎

引用本文:
Citation:

参考系波动下的参考系无关测量设备无关量子密钥分发协议

谷文苑, 赵尚弘, 东晨, 王星宇, 杨鼎
cstr: 32037.14.aps.68.20191364

Reference-frame-independent measurement-device-independent quantum key distribution under reference frame fluctuation

Gu Wen-Yuan, Zhao Shang-Hong, Dong Chen, Wang Xing-Yu, Yang Ding
cstr: 32037.14.aps.68.20191364
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 参考系无关测量设备无关量子密钥分发协议是解决实际系统中参考系对准问题的有效途径, 但其安全性的前提是参考系偏移速度缓慢. 考虑到现实参考系波动和信号长度有限的情况, 重点讨论了参考系偏移和波动下的有偏基参考系无关测量设备无关量子密钥分发协议性能的有效性. 仿真结果表明协议密钥率是关于偏移角的周期函数, 同时也是波动角的递减函数, 为下一步参考系无关测量设备无关量子密钥分发协议实用化打下了理论基础.
    Reference-frame-independent measurement-device-independent quantum key distribution is adopted to avoid aligning the reference frames in realistic setup, which can guarantee the system security against the slow drift of reference frame. However, the relative motion of reference frame including deviation and fluctuation can influence the performance of reference-frame-independent measurement-device-independent quantum key distribution in practical experimental demonstration. In this paper, taking finite effect into consideration, the performance of reference-frame-independent measurement-device-independent quantum key distribution with biased bases under reference frame deviation and fluctuation is presented to evaluate the effect of the relative motion of reference frame on our scheme, which makes the analysis conform to reality. Our simulation results imply that the key rates fluctuate periodically with the reference frame rotating, while declining with the reference frame fluctuation increasing.
      通信作者: 东晨, dongchengfkd@163.com
    • 基金项目: 国家自然科学基金(批准号: 11704412)、密码科学技术国家重点实验室开放课题基金(批准号: MMKFKT201823)、陕西省重点研发计划(批准号: 2019ZDLGY09-01)和国防科大校内科研重点项目(批准号: zk17-02-09)资助的课题
      Corresponding author: Dong Chen, dongchengfkd@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11704412), the Open Foundation of State Key Laboratory of Cryptography Science and Technology, China (Grant No. MMKFKT201823), the Key Research and Development Program of Shaanxi Province, China (Grant No. 2019ZDLGY09-01), and the Key Development Program of the National University of Defense Technology, China (Grant No. zk17-02-09)
    [1]

    Shannon C E 1949 Bell Sys. Tech. J. 28 656Google Scholar

    [2]

    Ekert A K 1991 Phys. Rev. Lett. 67 661Google Scholar

    [3]

    Lo H K, Ma X, Chen K 2005 Phys. Rev. Lett. 94 230504Google Scholar

    [4]

    Stucki D, Walenta N, Vannel F, Thew R T, Gisin N, Zbinden H, Gray S, Towery C R, Ten S 2009 New J. Phys. 11 075003Google Scholar

    [5]

    Wang S, Chen W, Guo J F, Yin Z Q, Li H W, Zhou Z, Guo G C, Han Z F 2012 Opt. Lett. 37 1008Google Scholar

    [6]

    Wang S, Yin Z Q, Chen W, He D Y, Song X T, Li H W, Zhang L J, Zhou Z, Guo G C, Han Z F 2015 Nat. Photon. 9 832Google Scholar

    [7]

    Tang G Z, Sun S H, Li C Y 2019 Chin. Phys. Lett. 36 070301Google Scholar

    [8]

    Wang X Y, Zhao S H, Dong C, Zhu Z D, Gu W Y 2019 Quantum Inf. Process. 18 304Google Scholar

    [9]

    Liu H W, Qu W X, Dou T Q, Wang J P, Zhang Y, Ma H Q 2018 Chin. Phys. B 27 100309Google Scholar

    [10]

    Liu K, Li J, Zhu J R, Zhang C M, Wang Q 2017 Chin. Phys. B 26 120302Google Scholar

    [11]

    Gan Y H, Wang Y, Bao W S, He R S, Zhou C, Jiang M S 2019 Chin. Phys. Lett. 36 040301Google Scholar

    [12]

    Du G H, Li H W, Wang Y, Bao W S 2019 Chin. Phys. B 28 090301Google Scholar

    [13]

    Brassard G, Lütkenhaus N, Mor T, Sanders B C 2000 Phys. Rev. Lett. 85 1330Google Scholar

    [14]

    陈艳辉, 王金东, 杜聪 2019 物理学报 68 130301Google Scholar

    Chen Y H, Wang J D, Du C 2019 Acta Phys. Sin. 68 130301Google Scholar

    [15]

    沈咏, 邹宏新 2010 物理学报 59 1473Google Scholar

    Shen Y, Zou Y X 2010 Acta Phys. Sin. 59 1473Google Scholar

    [16]

    Huang J Z, Yin Z Q, Wang S, Li H W, Chen W, Han Z F 2012 Eur. Phys. J. D 66 159Google Scholar

    [17]

    Lo H K, Curty M, Qi B 2012 Phys. Rev. Lett. 108 130503Google Scholar

    [18]

    Silva T F D, Vitoreti D, Xavier G B, Temporão G P, von der Weid J P 2013 Phys. Rev. A 88 052303Google Scholar

    [19]

    Tang Z Y, Liao Z F, Xu F H, Qi B, Qian L, Lo H K 2014 Phys. Rev. Lett. 112 190503Google Scholar

    [20]

    Yin H L, Chen T Y, Yu Z W, Liu H, You L X, Zhou Y H, Chen S J, Mao Y Q, Huang M Q, Zhang W J, Chen H, Li M J, Nolan D, Zhou F, Jiang X, Wang Z, Zhang Q, Wang X B, Pan J W 2016 Phys. Rev. Lett. 117 190501Google Scholar

    [21]

    Yin Z Q, Wang S, Chen W, Li H W, Guo G C, Han Z F 2014 Quantum Inf. Process. 13 1237Google Scholar

    [22]

    Wang C, Yin Z Q, Wang S, Chen W, Han Z F 2017 Optica 4 1016Google Scholar

    [23]

    Zhang C M, Zhu J R, Wang Q 2017 Phys. Rev. A 95 032309Google Scholar

    [24]

    Liu H W, Wang J P, Ma H Q, Sun S H 2018 Optica 5 902Google Scholar

    [25]

    Zhang H, Zhang C H, Zhang C M, Guo G C, Wang Q 2019 Quantum Inform. Process. 18 313Google Scholar

    [26]

    Xue Q Y, Jiao R Z 2019 JOSA B 36 476Google Scholar

    [27]

    Pramanik T, Park B K, Cho Y, Han S W, Kim Y S, Moon S 2017 Phys. Lett. A 381 2497Google Scholar

    [28]

    Yoon J, Pramanik T, Park B K, Han S W, Kim S, Kim Y S, Moon S 2019 Opt. Commun. 441 64Google Scholar

    [29]

    Zhang C M, Zhang J R, Wang Q 2017 J. Lightwave Technol. 35 4574Google Scholar

  • 图 1  Alice和Bob的三组共轭基的实际位置关系图

    Fig. 1.  Relationship among reference frames of Alice and Bob.

    图 2  参考系偏移和波动下有偏基RFI-MDI-QKD协议的C值 (a) 参数C与偏移角$\theta $的关系图; (b) 参数C与波动角$\delta $的关系图

    Fig. 2.  Parameter C of RFI-MDI-QKD with biased bases under reference frame deviation and fluctuation: (a) The parameter C vs. the reference frame deviation $\theta $; (b) the parameter C vs. the reference frame fluctuation $\delta $.

    图 3  有偏基RFI-MDI-QKD协议密钥率R与偏移角$\theta $、波动角$\delta $的关系图

    Fig. 3.  Secure key rates R of RFI-MDI-QKD with biased bases in regard to the reference frame deviation $\theta $ and fluctuation $\delta $.

    图 4  参考系偏移和波动下有偏基RFI-MDI-QKD协议密钥率变化图 (a) 密钥率R与偏移角$\theta $的关系图; (b) 协议密钥率R与波动角$\delta $的关系图

    Fig. 4.  Secure key rates of RFI-MDI-QKD with biased bases under reference frame deviation and fluctuation: (a) The secure key rates R vs. the reference frame deviation $\theta $; (b) the secure key rates R vs. the reference frame fluctuation $\delta $.

    表 1  有偏基RFI-MDI-QKD协议的主要仿真参数

    Table 1.  List of parameters of RFI-MDI-QKD with biased bases in the simulation.

    ${Y_0}$ed${e_0}$fηd
    $1.2 \times {10^{-6}}$0.0050.51.160.125
    下载: 导出CSV
  • [1]

    Shannon C E 1949 Bell Sys. Tech. J. 28 656Google Scholar

    [2]

    Ekert A K 1991 Phys. Rev. Lett. 67 661Google Scholar

    [3]

    Lo H K, Ma X, Chen K 2005 Phys. Rev. Lett. 94 230504Google Scholar

    [4]

    Stucki D, Walenta N, Vannel F, Thew R T, Gisin N, Zbinden H, Gray S, Towery C R, Ten S 2009 New J. Phys. 11 075003Google Scholar

    [5]

    Wang S, Chen W, Guo J F, Yin Z Q, Li H W, Zhou Z, Guo G C, Han Z F 2012 Opt. Lett. 37 1008Google Scholar

    [6]

    Wang S, Yin Z Q, Chen W, He D Y, Song X T, Li H W, Zhang L J, Zhou Z, Guo G C, Han Z F 2015 Nat. Photon. 9 832Google Scholar

    [7]

    Tang G Z, Sun S H, Li C Y 2019 Chin. Phys. Lett. 36 070301Google Scholar

    [8]

    Wang X Y, Zhao S H, Dong C, Zhu Z D, Gu W Y 2019 Quantum Inf. Process. 18 304Google Scholar

    [9]

    Liu H W, Qu W X, Dou T Q, Wang J P, Zhang Y, Ma H Q 2018 Chin. Phys. B 27 100309Google Scholar

    [10]

    Liu K, Li J, Zhu J R, Zhang C M, Wang Q 2017 Chin. Phys. B 26 120302Google Scholar

    [11]

    Gan Y H, Wang Y, Bao W S, He R S, Zhou C, Jiang M S 2019 Chin. Phys. Lett. 36 040301Google Scholar

    [12]

    Du G H, Li H W, Wang Y, Bao W S 2019 Chin. Phys. B 28 090301Google Scholar

    [13]

    Brassard G, Lütkenhaus N, Mor T, Sanders B C 2000 Phys. Rev. Lett. 85 1330Google Scholar

    [14]

    陈艳辉, 王金东, 杜聪 2019 物理学报 68 130301Google Scholar

    Chen Y H, Wang J D, Du C 2019 Acta Phys. Sin. 68 130301Google Scholar

    [15]

    沈咏, 邹宏新 2010 物理学报 59 1473Google Scholar

    Shen Y, Zou Y X 2010 Acta Phys. Sin. 59 1473Google Scholar

    [16]

    Huang J Z, Yin Z Q, Wang S, Li H W, Chen W, Han Z F 2012 Eur. Phys. J. D 66 159Google Scholar

    [17]

    Lo H K, Curty M, Qi B 2012 Phys. Rev. Lett. 108 130503Google Scholar

    [18]

    Silva T F D, Vitoreti D, Xavier G B, Temporão G P, von der Weid J P 2013 Phys. Rev. A 88 052303Google Scholar

    [19]

    Tang Z Y, Liao Z F, Xu F H, Qi B, Qian L, Lo H K 2014 Phys. Rev. Lett. 112 190503Google Scholar

    [20]

    Yin H L, Chen T Y, Yu Z W, Liu H, You L X, Zhou Y H, Chen S J, Mao Y Q, Huang M Q, Zhang W J, Chen H, Li M J, Nolan D, Zhou F, Jiang X, Wang Z, Zhang Q, Wang X B, Pan J W 2016 Phys. Rev. Lett. 117 190501Google Scholar

    [21]

    Yin Z Q, Wang S, Chen W, Li H W, Guo G C, Han Z F 2014 Quantum Inf. Process. 13 1237Google Scholar

    [22]

    Wang C, Yin Z Q, Wang S, Chen W, Han Z F 2017 Optica 4 1016Google Scholar

    [23]

    Zhang C M, Zhu J R, Wang Q 2017 Phys. Rev. A 95 032309Google Scholar

    [24]

    Liu H W, Wang J P, Ma H Q, Sun S H 2018 Optica 5 902Google Scholar

    [25]

    Zhang H, Zhang C H, Zhang C M, Guo G C, Wang Q 2019 Quantum Inform. Process. 18 313Google Scholar

    [26]

    Xue Q Y, Jiao R Z 2019 JOSA B 36 476Google Scholar

    [27]

    Pramanik T, Park B K, Cho Y, Han S W, Kim Y S, Moon S 2017 Phys. Lett. A 381 2497Google Scholar

    [28]

    Yoon J, Pramanik T, Park B K, Han S W, Kim S, Kim Y S, Moon S 2019 Opt. Commun. 441 64Google Scholar

    [29]

    Zhang C M, Zhang J R, Wang Q 2017 J. Lightwave Technol. 35 4574Google Scholar

计量
  • 文章访问数:  8959
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-09
  • 修回日期:  2019-09-25
  • 上网日期:  2019-11-27
  • 刊出日期:  2019-12-01

/

返回文章
返回