搜索

x
中国物理学会期刊

基于参量放大器的铯原子D2线明亮偏振压缩光源的产生

CSTR: 32037.14.aps.69.20191009

Generation of bright polarization squeezed light at cesium D2 line based on optical parameter amplifier

CSTR: 32037.14.aps.69.20191009
PDF
HTML
导出引用
  • 原子线共振波段量子光源的制备在精密测量以及研究非经典光与物质的相互作用方面具有重要意义. 本文报道了在实验上首次利用低于阈值的环形光学参量放大器产生铯原子D2线的明亮偏振压缩光. 实验上利用参量放大过程产生了波长852 nm附近三个斯托克斯参量 \hat S_1 , \hat S_2 \hat S_3 的偏振压缩光源, 在频率为2—10 MHz范围内, 实测最大压缩达4.3 dB, 考虑探测及传输等因素, 参量放大器出射的压缩为5.2 dB(即标准量子噪声基准的30.2%). 该原子线共振的量子光源在量子存储、光与原子相互作用和超越标准量子极限的精密测量等领域具有重要的应用价值.

     

    Quantum light field is very important source in quantum optics and quantum precision measurement, and the generation of quantum state of light is significant in quantum storage, quantum metrology and studying the interaction between nonclassical light and matter. The polarization squeezed light near the atomic transition has great potential applications in the precise measurement of magnetic field as its Stokes parameter’s noise is less than the standard quantum limit (SQL). Therefore, it is very important to generate the polarization squeezed light at atomic transition. We report in this paper the experiment on generating the bright polarization squeezed light at cesium D2 line based on an optical parametric amplifier (OPA). The experimental system includes the following three parts: 1) a second harmonic generator (SHG), 2) an OPA, and 3) a detection system. The OPA has a similar structure to the SHG system with four-mirror ring cavity in which only the fundamental wave is resonant. A nonlinear type-I periodically-poled KTiOPO4 (PPKTP) crystal with a size of 1 mm × 2 mm × 20 mm is placed in the center of the cavity waist and its temperature is precisely controlled. The OPA is pumped by the 426 nm blue light which is generated by SHG and this OPA is operating below the threshold. The squeezed light at cesium D2 line is produced when the crystal temperature is at its optimum phase-matching temperature and the OPA cavity is stabilized based on resonance. The generated squeezed light is combined with the coherent light on a polarizing beam splitter (PBS) to obtain the polarized squeezed light for either \hat S_2 or \hat S_3 of the Stokes parameter by controlling the type of squeezed light (parametric amplification or de-amplification) and the relative phase (0 or π/2) of two beams. And for \hat S_1 , the amplitude-squeezed light (corresponding to parametric de-amplification) is the \hat S_1 squeezed light. The maximum squeezing of 4.3 dB (actually 5.2 dB) is observed in a bandwidth range of 2-10 MHz. At present, the squeezing is mainly limited by the escape efficiency of OPA and the detection efficiency, and the OPA escape efficiency is mainly limited by the blue-light-induced loss of PPKTP crystal and the thermal effect of crystal. In the optical atomic magnetometer, increasing the signal-to-noise ratio (SNR) of the system can effectively improve the sensitivity of the magnetic field measurement. This bright polarization squeezed light is expected to be used in the optical cesium atomic magnetometer to improve the sensitivity of the magnetometer.

     

    目录

    /

    返回文章
    返回