-
在考虑光学微腔中二阶和三阶非线性效应的情况下, 引入了可同时描述腔内基频和倍频光场的演化过程的Lugiato-Lefeve方程, 分析了SiN微腔中二次谐波的产生, 并讨论了各参数对腔内基频和倍频光场的影响. 理论分析结果表明, 失谐参量为0时, 稳定后的基频光场为平顶脉冲的形式, 而倍频光场呈正弦分布; 失谐参量增加, 将导致腔内基频和倍频光功率在演化过程中出现振荡, 且最终稳定的光功率变弱, 稳定后的光场分布为周期性变化; 失谐参量的值过大, 会使得微腔光场处于混沌状态. 抽运光强较弱时, 腔内可形成稳定的光场分布; 抽运光强较强时, 会导致腔内色散以及非线性效应过强, 最终稳定的光场仍然呈周期性变化, 且抽运光功率越强, 光功率的演化曲线振荡越强. 此外, 选取特定的微腔尺寸, 微腔可工作于“图灵环”状态. 理论分析结果对研究光学微腔中二次谐波的产生有重要意义.With the consideration of the second and the third order nonlinear effect, the Lugiato-Lefeve equation which describes the field evolution of the fundamental frequency wave and the second harmonic wave is introduced. Based on the Lugiato-Lefeve equation, the generation of the second harmonic wave in the SiN microresonator is analyzed, and the effect of the each parameter on the dual field is studied. Simulation results indicate that the stable field of the fundamental frequency wave is of flat top pulse, and the field of the second harmonic wave is of sinusoidal distribution. When the detuning parameter increases, the power of the dual wave inside the microresonator oscillates, and the stable power weakens, the stable light field is periodically varied. Moreover, the chaos emerges as detuning parameter becomes large. The stable field can be generated in the microresonator with the weak pump power. However, because of the high pump power, the dispersion and nonlinear effect are enhanced, resulting in the periodic light field. Furthermore, the oscillation of the dual power curve is aggravated, as the pump power increases. In addition, the turning patterns can be observed by choosing the special dimension of microresonator. Theoretical analysis results are significant for studying the generation of the second harmonic wave in the microresonator.
-
Keywords:
- nonlinear optics /
- optical microresonator /
- second harmonic waves








下载: