搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钴掺杂MoSe2共生长中氢气的作用分析及磁电特性研究

张宝军 王芳 沈稼强 单欣 邸希超 胡凯 张楷亮

引用本文:
Citation:

钴掺杂MoSe2共生长中氢气的作用分析及磁电特性研究

张宝军, 王芳, 沈稼强, 单欣, 邸希超, 胡凯, 张楷亮

Effect analysis and magnetoelectric properties of hydrogen in Co-doped MoSe2 Co-growth

Zhang Bao-Jun, Wang Fang, Shen Jia-Qiang, Shan Xin, Di Xi-Chao, Hu Kai, Zhang Kai-Liang
PDF
HTML
导出引用
  • 采用原位共生长化学气相沉积法, 以Co3O4、MoO3、Se粉末为前驱物, 710 ℃下在SiO2衬底上生长掺钴MoSe2纳米薄片, 分析讨论氢气含量对其生长及调节机理的影响. 表面形貌分析表明, 氢气的引入促进了成核所需的氧硒金属化合物以及横向生长中需要的CoMoSe化合物分子的生成; AFM(Atomic Force Microscope)结果表明氢气有利于生长单层二维超薄掺钴MoSe2. 随着Co3O4前驱物用量的增加, 样品的拉曼和PL(Photoluminescence)谱图分别表现出红移和蓝移现象, 带隙实现从1.52—1.57 eV的调制. XPS (X-ray photoelectron spectroscopy)结果分析得到Co的元素组分比为4.4%. 通过SQUID-VSM (Superconducting QUantum Interference Device)和器件电学测试分析了样品的磁电特性, 结果表明Co掺入后MoSe2由抗磁性变为软磁性; 背栅FETs器件的阈值电压比纯MoSe2向正向偏移5 V且关态电流更低; 为超薄二维材料磁电特性研究及应用拓展提供了基础探索.
    In this paper, Co3O4、MoO3 and Se powders were used as precursors in in-situ co-growth chemical vapor deposition method. Cobalt-doped MoSe2 nanosheets were grown on SiO2 substrate at 710 ℃. The influence of hydrogen content on its growth and regulation mechanism was discussed. Surface morphology analysis showed that the introduction of hydrogen promoted the formation of oxy-selenium metal compounds required for nucleation and the CoMoSe compound molecules required for lateral growth. AFM(atomic force microscope) results show that hydrogen is beneficial to the growth of single-layer two-dimensional cobalt-doped MoSe2. With the increase of the amount of Co3O4 precursor, the Raman and PL(photoluminescence) spectra of the sample showed red shift and blue shift, respectively, and the bandgap was modulated from 1.52 eV to 1.57 eV. The XPS(X-ray photoelectron spectroscopy) results analysis showed that the elemental composition ratio of Co was 4.4%. The magneto and electric properties of the samples were analyzed by SQUID-VSM(superconducting quantum interference device) and semiconductor parameter analyzer for electrical testing. The results show that MoSe2 changes from diamagnetic to soft magnetic after Co incorporation; the threshold voltage of back gate FETs is shifted by 5 V from pure MoSe2, and the off-state current is lower. This research provides a basis for the research and application development of ultra-thin two-dimensional materials.
      通信作者: 王芳, fwang75@163.com ; 张楷亮, kailiang_zhang@163.com
    • 基金项目: 国家级-国家自然科学基金重点项目(61404091, 61274113, 61505144, 51502203 ,51502204)
      Corresponding author: Wang Fang, fwang75@163.com ; Zhang Kai-Liang, kailiang_zhang@163.com
    [1]

    Larentis S, Fallahazad B, Tutuc E 2012 Appl. Phys. Lett. 101 223104Google Scholar

    [2]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [3]

    Li Y, Zhang K, Wang F, Feng Y, Li Y, Han Y, Tang D, Zhang B 2017 ACS Appl. Mater. Interfaces. 9 36009Google Scholar

    [4]

    Li X, Puretzky A A, Sang X, KC S, Tian M, Ceballos F, Mahjouri‐Samani M, Wang K, Unocic R R, Zhao H 2017 Adv. Funct. Mater. 27 1603850Google Scholar

    [5]

    Huang B, Yoon M, Sumpter B G, Wei S-H, Liu F 2015 Appl. Phys. Lett. 115 126806Google Scholar

    [6]

    Fan S, Shen W, An C, Sun Z, Wu S, Xu L, Sun D, Hu X, Zhang D, Liu J 2018 ACS Appl. Mater. Interfaces. 10 26533Google Scholar

    [7]

    Feng Q, Mao N, Wu J, Xu H, Wang C, Zhang J, Xie L 2015 ACS Nano. 9 7450Google Scholar

    [8]

    Feng Q, Zhu Y, Hong J, Zhang M, Duan W, Mao N, Wu J, Xu H, Dong F, Lin F, Jin C, Wang C, Zhang J, Xie L 2014 Adv. Mater. 26 2648Google Scholar

    [9]

    Tang D, Wang F, Zhang B, Li Y, Li Y, Feng Y, Han Y, Ma J, Ren T, and Zhang K 2018 J. Mater. Sci. 53 14447Google Scholar

    [10]

    Li X, Lin M W, Basile L, Hus S M, Puretzky A A, Lee J, Kuo Y C, Chang L Y, Wang K, Idrobo J C, Li A P, Chen C-H, Rouleau C M, Geohegan D B, Xiao K 2016 Adv. Mater. 28 8240Google Scholar

    [11]

    Cheng Y C, Zhu Z, Mi W B, Guo Z B, Schwingenschlögl U 2013 Phys. Rev. B. 87 100401Google Scholar

    [12]

    Xie L Y, Zhang J M 2016 Superlattices Microstruct. 98 148

    [13]

    Xu R, Liu B, Zou X, Cheng H M 2017 ACS Appl. Mater. Interfaces. 9 38796Google Scholar

    [14]

    Li B, Huang L, Zhong M, Huo N, Li Y, Yang S, Fan C, Yang J, Hu W, Wei Z, Li J 2015 ACS Nano. 9 1257Google Scholar

    [15]

    Chen X, Qiu Y, Liu G, Zheng W, Feng W, Gao F, Cao W, Fu Y, Hu W, Hu P 2017 J. Mater. Chem. A. 5 11357Google Scholar

    [16]

    黄静雯, 罗利琼, 金波, 楚士晋, 彭汝芳 2017 物理学报 66 137801Google Scholar

    Huang J W, Luo L Q, Jin B, Chu S J, Peng R F 2017 Acta Phys. Sin. 66 137801Google Scholar

    [17]

    Zhang J, Yu H, Chen W, Tian X, Liu D, Cheng M, Xie G, Yang W, Yang R, Bai X, Shi D, Zhang G 2014 ACS nano. 8 6024Google Scholar

    [18]

    Tu Z, Li G, Ni X, Meng L, Bai S, Chen X, Lou J, Qin Y 2016 Appl. Phys. Lett. 109 223101Google Scholar

    [19]

    Rong Y, Fan Y, Koh A L, Robertson A W, He K, Wang S, Tan H, Sinclair R, Warner J H 2014 Nanoscale. 6 12096Google Scholar

    [20]

    Chen J, Liu B, Liu Y, Tang W, Nai C T, Li L, Zheng J, Gao L, Zheng Y, Shin H. S, Jeong H Y, Loh K P 2015 Adv. Mater. 27 6722Google Scholar

    [21]

    Zhan L, Wan W, Zhu Z, Xu Y, Shih T-M, Zhang C, Lin W, Li X, Zhao Z, Ying H, Yao Q, Zheng Y, Zhu Z, Cai W 2017 J. Phys. Chem. C 121 4703Google Scholar

    [22]

    Chen J, Zhao X, Tan S J, Xu H, Wu B, Liu B, Fu D, Fu W, Geng D, Liu Y, Liu W, Li L, Zhou W, Sum T C, Loh K P 2017 J. Am. Chem. Soc. 139 1073Google Scholar

    [23]

    Cheng J, Jiang T, Ji Q, Zhang Y, Li Z, Shan Y, Zhang Y, Gong X, Liu W, Wu S 2015 Adv. Mater. 27 4069Google Scholar

    [24]

    Gao Y, Hong Y L, Yin L C, Wu Z, Yang Z, Chen M L, Liu Z, Ma T, Sun D M, Ni Z, Ma X-L, Cheng H-M, Ren W 2017 Adv. Mater. 29 1700990Google Scholar

  • 图 1  化学气相沉积原位共生长掺钴MoSe2样品放置示意图

    Fig. 1.  Schematic illustration for Chemical vapor deposition in situ co-growth of cobalt-doped MoSe2.

    图 2  不同氢气流量下生长掺Co MoSe2样品OM图

    Fig. 2.  OM of Co-doped MoSe2 under different H2 flow rates.

    图 3  不同氢气流量下样品形貌情况 (a)−(d)为二维形貌图; (e)−(h)为沿红色虚线的高度测量结果

    Fig. 3.  Topographic measurements under different H2 flow rates: (a)−(d) Topography; (e)−(h) profile line along the red dash line.

    图 4  (a)掺Co MoSe2的EDS谱图; (b)掺Co MoSe2样品EDS mapping图; (c)−(e)为未掺钴与掺钴的二硒化钼样品的XPS: (c) Co2p谱, (d) Mo3d谱和(e) Se3d谱

    Fig. 4.  (a) EDS spectrum of doped Co MoSe2; (b) EDS mapping of Co doped MoSe2; (c−e) XPS contrast spectra of MoSe2 and cobalt-doped MoSe2: (c) Co2p core level region, (d) Mo3d core level region and (e) Se3d core level region, respectively.

    图 5  (a) MoSe2与掺Co MoSe2的拉曼图谱; (b)PL图谱; (c) MoSe2拉曼mapping图(238 cm–1); (d)掺Co MoSe2拉曼mapping图(235 cm–1)

    Fig. 5.  (a) Raman and (b) PL spectra of MoSe2 and Co-doped MoSe2; (c) raman mapping of MoSe2 (238 cm–1); (d) raman mapping Co-doped MoSe2 (235 cm–1).

    图 6  (a) MoSe2与(b)不同Co3O4用量的掺Co MoSe2的VSM图

    Fig. 6.  VSM of (a) MoSe2 and (b) Co doped MoSe2 with different Co3O4 use level.

    图 7  (a)未掺杂MoSe2与(b)掺Co MoSe2 FETs器件转移特性线性和对数坐标图

    Fig. 7.  Typical transfer characteristics of (a) undoped MoSe2 and (b) Co doped MoSe2 FETs device with semilog scale.

  • [1]

    Larentis S, Fallahazad B, Tutuc E 2012 Appl. Phys. Lett. 101 223104Google Scholar

    [2]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [3]

    Li Y, Zhang K, Wang F, Feng Y, Li Y, Han Y, Tang D, Zhang B 2017 ACS Appl. Mater. Interfaces. 9 36009Google Scholar

    [4]

    Li X, Puretzky A A, Sang X, KC S, Tian M, Ceballos F, Mahjouri‐Samani M, Wang K, Unocic R R, Zhao H 2017 Adv. Funct. Mater. 27 1603850Google Scholar

    [5]

    Huang B, Yoon M, Sumpter B G, Wei S-H, Liu F 2015 Appl. Phys. Lett. 115 126806Google Scholar

    [6]

    Fan S, Shen W, An C, Sun Z, Wu S, Xu L, Sun D, Hu X, Zhang D, Liu J 2018 ACS Appl. Mater. Interfaces. 10 26533Google Scholar

    [7]

    Feng Q, Mao N, Wu J, Xu H, Wang C, Zhang J, Xie L 2015 ACS Nano. 9 7450Google Scholar

    [8]

    Feng Q, Zhu Y, Hong J, Zhang M, Duan W, Mao N, Wu J, Xu H, Dong F, Lin F, Jin C, Wang C, Zhang J, Xie L 2014 Adv. Mater. 26 2648Google Scholar

    [9]

    Tang D, Wang F, Zhang B, Li Y, Li Y, Feng Y, Han Y, Ma J, Ren T, and Zhang K 2018 J. Mater. Sci. 53 14447Google Scholar

    [10]

    Li X, Lin M W, Basile L, Hus S M, Puretzky A A, Lee J, Kuo Y C, Chang L Y, Wang K, Idrobo J C, Li A P, Chen C-H, Rouleau C M, Geohegan D B, Xiao K 2016 Adv. Mater. 28 8240Google Scholar

    [11]

    Cheng Y C, Zhu Z, Mi W B, Guo Z B, Schwingenschlögl U 2013 Phys. Rev. B. 87 100401Google Scholar

    [12]

    Xie L Y, Zhang J M 2016 Superlattices Microstruct. 98 148

    [13]

    Xu R, Liu B, Zou X, Cheng H M 2017 ACS Appl. Mater. Interfaces. 9 38796Google Scholar

    [14]

    Li B, Huang L, Zhong M, Huo N, Li Y, Yang S, Fan C, Yang J, Hu W, Wei Z, Li J 2015 ACS Nano. 9 1257Google Scholar

    [15]

    Chen X, Qiu Y, Liu G, Zheng W, Feng W, Gao F, Cao W, Fu Y, Hu W, Hu P 2017 J. Mater. Chem. A. 5 11357Google Scholar

    [16]

    黄静雯, 罗利琼, 金波, 楚士晋, 彭汝芳 2017 物理学报 66 137801Google Scholar

    Huang J W, Luo L Q, Jin B, Chu S J, Peng R F 2017 Acta Phys. Sin. 66 137801Google Scholar

    [17]

    Zhang J, Yu H, Chen W, Tian X, Liu D, Cheng M, Xie G, Yang W, Yang R, Bai X, Shi D, Zhang G 2014 ACS nano. 8 6024Google Scholar

    [18]

    Tu Z, Li G, Ni X, Meng L, Bai S, Chen X, Lou J, Qin Y 2016 Appl. Phys. Lett. 109 223101Google Scholar

    [19]

    Rong Y, Fan Y, Koh A L, Robertson A W, He K, Wang S, Tan H, Sinclair R, Warner J H 2014 Nanoscale. 6 12096Google Scholar

    [20]

    Chen J, Liu B, Liu Y, Tang W, Nai C T, Li L, Zheng J, Gao L, Zheng Y, Shin H. S, Jeong H Y, Loh K P 2015 Adv. Mater. 27 6722Google Scholar

    [21]

    Zhan L, Wan W, Zhu Z, Xu Y, Shih T-M, Zhang C, Lin W, Li X, Zhao Z, Ying H, Yao Q, Zheng Y, Zhu Z, Cai W 2017 J. Phys. Chem. C 121 4703Google Scholar

    [22]

    Chen J, Zhao X, Tan S J, Xu H, Wu B, Liu B, Fu D, Fu W, Geng D, Liu Y, Liu W, Li L, Zhou W, Sum T C, Loh K P 2017 J. Am. Chem. Soc. 139 1073Google Scholar

    [23]

    Cheng J, Jiang T, Ji Q, Zhang Y, Li Z, Shan Y, Zhang Y, Gong X, Liu W, Wu S 2015 Adv. Mater. 27 4069Google Scholar

    [24]

    Gao Y, Hong Y L, Yin L C, Wu Z, Yang Z, Chen M L, Liu Z, Ma T, Sun D M, Ni Z, Ma X-L, Cheng H-M, Ren W 2017 Adv. Mater. 29 1700990Google Scholar

  • [1] 徐思源, 张召富, 王俊, 刘雪飞, 郭宇铮. MoSi2N4的本征点缺陷以及掺杂特性的第一性原理计算. 物理学报, 2024, 73(8): 086801. doi: 10.7498/aps.73.20231931
    [2] 李欣悦, 高国翔, 高强, 刘春生, 叶小娟. 二维BeB2作为镁离子电池阳极材料的理论研究. 物理学报, 2024, 73(11): 118201. doi: 10.7498/aps.73.20240134
    [3] 杨瑞龙, 张钰樱, 杨柯, 姜琦涛, 杨晓婷, 郭金中, 许小红. 二维钒掺杂Cr2S3纳米片的生长与磁性研究. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231229
    [4] 杨瑞龙, 张钰樱, 杨柯, 姜琦涛, 杨晓婷, 郭金中, 许小红. 二维钒掺杂Cr2S3纳米片的生长与磁性研究. 物理学报, 2023, 72(24): 247501. doi: 10.7498/aps.72.20231229
    [5] 费翔, 张秀梅, 付泉桂, 蔡正阳, 南海燕, 顾晓峰, 肖少庆. 基于熔融玻璃的预沉积法生长毫米级单晶MoS2及WS2-MoS2异质结. 物理学报, 2022, 71(4): 048101. doi: 10.7498/aps.71.20211735
    [6] 陈上峰, 孙乃坤, 张宪民, 王凯, 李武, 韩艳, 吴丽君, 岱钦. Mn3As2掺杂Cd3As2纳米结构的制备及热电性能. 物理学报, 2022, 71(18): 187201. doi: 10.7498/aps.71.20220584
    [7] 宋蕊, 王必利, 冯凯, 王黎, 梁丹丹. 二维VOBr2单层的结构畸变及其磁性和铁电性. 物理学报, 2022, 71(3): 037101. doi: 10.7498/aps.71.20211516
    [8] 韩丹, 刘志华, 刘琭琭, 韩晓美, 刘东明, 禚凯, 桑胜波. 新型二维材料Ti3C2Tx MXene制备及其气敏性能研究. 物理学报, 2022, 71(1): 010701. doi: 10.7498/aps.71.20211048
    [9] 傅群东, 王小伟, 周修贤, 朱超, 刘政. 硅基底上二维硒氧化铋的化学气相沉积法合成及其光电探测应用. 物理学报, 2022, 71(16): 166101. doi: 10.7498/aps.71.20220388
    [10] 宋蕊. 二维VOBr2单层的结构畸变及其磁性和铁电性研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211516
    [11] 陈旭凡, 杨强, 胡小会. 过渡金属原子掺杂对二维CrBr3电磁学性能的调控. 物理学报, 2021, 70(24): 247401. doi: 10.7498/aps.70.20210936
    [12] 韩丹, 刘志华, 刘琭琭, 韩晓美, 刘东明, 禚凯, 桑胜波. 新型二维材料Ti3C2Tx MXene制备及其气敏性能研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211048
    [13] 王铄, 王文辉, 吕俊鹏, 倪振华. 化学气相沉积法制备大面积二维材料薄膜: 方法与机制. 物理学报, 2021, 70(2): 026802. doi: 10.7498/aps.70.20201398
    [14] 冯秋菊, 石博, 李昀铮, 王德煜, 高冲, 董增杰, 解金珠, 梁红伟. 单根Sb掺杂ZnO微米线非平衡电桥式气敏传感器的制作与性能. 物理学报, 2020, 69(3): 038102. doi: 10.7498/aps.69.20191530
    [15] 李丹阳, 韩旭, 徐光远, 刘筱, 赵枭钧, 李庚伟, 郝会颖, 董敬敬, 刘昊, 邢杰. 低功耗、高灵敏的Bi2O2Se光电导探测器. 物理学报, 2020, 69(24): 248502. doi: 10.7498/aps.69.20201044
    [16] 黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎. 空位及氮掺杂二维ZnO单层材料性质:第一性原理计算与分子轨道分析. 物理学报, 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [17] 冯秋菊, 李芳, 李彤彤, 李昀铮, 石博, 李梦轲, 梁红伟. 外电场辅助化学气相沉积方法制备网格状β-Ga2O3纳米线及其特性研究. 物理学报, 2018, 67(21): 218101. doi: 10.7498/aps.67.20180805
    [18] 邢兰俊, 常永勤, 邵长景, 王琳, 龙毅. Sn掺杂ZnO薄膜的室温气敏性能及其气敏机理. 物理学报, 2016, 65(9): 097302. doi: 10.7498/aps.65.097302
    [19] 董艳芳, 何大伟, 王永生, 许海腾, 巩哲. 一种简单的化学气相沉积法制备大尺寸单层二硫化钼. 物理学报, 2016, 65(12): 128101. doi: 10.7498/aps.65.128101
    [20] 冯秋菊, 许瑞卓, 郭慧颖, 徐坤, 李荣, 陶鹏程, 梁红伟, 刘佳媛, 梅艺赢. 衬底位置对化学气相沉积法制备的磷掺杂p型ZnO纳米材料形貌和特性的影响. 物理学报, 2014, 63(16): 168101. doi: 10.7498/aps.63.168101
计量
  • 文章访问数:  9385
  • PDF下载量:  124
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-29
  • 修回日期:  2019-11-21
  • 刊出日期:  2020-02-20

/

返回文章
返回