搜索

x
中国物理学会期刊

Boussinesq方程的Lax对、Bäcklund变换、对称群变换和Riccati展开相容性

CSTR: 32037.14.aps.69.20191316

The Boussinesq equation: Lax pair, Bäcklund transformation, symmetry group transformation and consistent Riccati expansion solvability

CSTR: 32037.14.aps.69.20191316
PDF
HTML
导出引用
  • Boussinesq方程是流体力学等领域一个非常重要的方程. 本文推导了Boussinesq方程的Lax对. 借助于截断Painlevé展开, 得到了Boussinesq方程的自Bäcklund变换, 以及Boussinesq方程和Schwarzian形式的Boussinesq方程之间的Bäcklund变换. 探讨了Boussinesq方程的非局域对称, 研究了Boussinesq方程的单参数群变换和单参数子群不变解. 运用Riccati展开法研究了Boussinesq方程, 证明Boussinesq方程具有Riccati展开相容性, 得到了Boussinesq方程的孤立波-椭圆余弦波解.

     

    The Boussinesq equation is a very important equation in fluid mechanics and some other disciplines. A Lax pair of the Boussinesq equation is proposed. With the help of the truncated Painlevé expansion, auto-Bäcklund transformation of the Boussinesq equation and Bäcklund transformation between the Boussinesq equation and the Schwarzian Boussinesq equation are demonstrated. Nonlocal symmetries of the Boussinesq equation are discussed. One-parameter subgroup invariant solutions and one-parameter group transformations are obtained. The consistent Riccati expansion solvability of the Boussinesq equation is proved and some interaction structures between soliton-cnoidal waves are obtained by consistent Riccati expansion.

     

    目录

    /

    返回文章
    返回