-
Boussinesq方程是流体力学等领域一个非常重要的方程. 本文推导了Boussinesq方程的Lax对. 借助于截断Painlevé展开, 得到了Boussinesq方程的自Bäcklund变换, 以及Boussinesq方程和Schwarzian形式的Boussinesq方程之间的Bäcklund变换. 探讨了Boussinesq方程的非局域对称, 研究了Boussinesq方程的单参数群变换和单参数子群不变解. 运用Riccati展开法研究了Boussinesq方程, 证明Boussinesq方程具有Riccati展开相容性, 得到了Boussinesq方程的孤立波-椭圆余弦波解.
-
关键词:
- Boussinesq方程 /
- lax对 /
- Bäcklund变换 /
- Riccati展开
The Boussinesq equation is a very important equation in fluid mechanics and some other disciplines. A Lax pair of the Boussinesq equation is proposed. With the help of the truncated Painlevé expansion, auto-Bäcklund transformation of the Boussinesq equation and Bäcklund transformation between the Boussinesq equation and the Schwarzian Boussinesq equation are demonstrated. Nonlocal symmetries of the Boussinesq equation are discussed. One-parameter subgroup invariant solutions and one-parameter group transformations are obtained. The consistent Riccati expansion solvability of the Boussinesq equation is proved and some interaction structures between soliton-cnoidal waves are obtained by consistent Riccati expansion.








下载: