搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

HgCdTe薄膜的输运特性及其应力调控

张松然 何代华 涂华垚 孙艳 康亭亭 戴宁 褚君浩 俞国林

引用本文:
Citation:

HgCdTe薄膜的输运特性及其应力调控

张松然, 何代华, 涂华垚, 孙艳, 康亭亭, 戴宁, 褚君浩, 俞国林

Magnetotransport properties and stress control of HgCdTe thin film

Zhang Song-Ran, He Dai-Hua, Tu Hua-Yao, Sun yan, Kang Ting-Ting, Dai Ning, Chu Jun-Hao, Yu Guo-Lin
PDF
HTML
导出引用
  • 窄禁带直接带隙半导体材料碲镉汞(Hg1–xCdxTe)是一种在红外探测与自旋轨道耦合效应基础研究方面都具有重要应用意义的材料. 本文对单晶生长的体材料Hg0.851Cd0.149Te进行阳极氧化以形成表面反型层, 将样品粘贴在压电陶瓷上减薄后进行磁输运测试, 在压电陶瓷未加电压时观察到了明显的SdH振荡效应. 对填充因子与磁场倒数进行线性拟合, 获得样品反型层二维电子气的载流子浓度为$ {n_{\rm{s}}} = 1.25 \times {10^{16}}~{{\rm{m}}^{ - 2}}$. 在不同磁场下, 利用压电陶瓷对样品进行应力调控, 观测到具有不同特征的现象, 分析应是样品中存在二维电子气与体材料两个导电通道. 零磁场下体材料主导的电阻的变化应来源于应力导致的带隙的改变; 而高场下产生类振荡现象的原因应为应力导致的二维电子气能级的分裂.
    In recent years, the research on topological materials, including topological insulator and topological semimetal, has received a lot of attention in condensed matter physics. HgCdTe, widely used in infrared detection, also holds huge potential in this field. It has been reported that the strained thin Hg0.865Cd0.135Te can realize topological insulator phase by using a CdZnTe substrate. However, the stress caused by changing substrate has great limitations. For example, the stress cannot be changed once the sample has been grown. Hence, we try to use a piezoceramics (PZT) instead to implement the stress and control the properties of HgCdTe. The main purpose of our experiment is to verify its validity. As is well known, the band structure of Hg1–xCdxTe can be precisely controlled by changing the content of Cd. When x lies between 0 and 0.165, HgCdTe features an inverted band structure, which is the premise of realizing topological phase. In this work, an inversion layer is induced on a single crystal grown HgCdTe bulk material by anodic oxidation, whose content of Cd is confirmed to be 0.149 by using XRD. Then the sample is thinned and attached to a PZT, which the tuning of stress is realized by applying a voltage to. Ohmic contacts are realized by indium in van der Pauw configuration. All measurements are carried out by using an Oxford Instruments 4He cryostat with magnetic field applied perpendicularly to the sample plane. At 1.5 K and zero voltage, an evident SdH oscillation is observed. By fitting the linear relationship between filling factor and the reciprocal of magnetic field, the concentration is obtained to be ${n_{\rm{s}}} = 1.25 \times {10^{16}}\;{{\rm{m}}^{ - 2}}$. Subsequently, we scan the voltage from 200 V to –200 V continuously in different magnetic fields. Two phenomena with different characteristics are observed. It is found that the resistance changes linearly with stress at zero field while an SdH oscillation-like behavior occurs at high field. We attribute such a difference to the existence of two conductive channels: one is the bulk material and the other is the two-dimensional electron gas. It is also noteworthy that the topological phase in our sample cannot be determined because the quantum Hall conductance is polluted by the conductance of bulk material. In conclusion, our results show that it is an effective way to use the PZT to tune the stress and this method can also be applied to the research of other materials.
      通信作者: 俞国林, yug@mail.sitp.ac.cn
    • 基金项目: 国家级-国家重点基础研究发展计划(2016YFA0202201)
      Corresponding author: Yu Guo-Lin, yug@mail.sitp.ac.cn
    [1]

    Rogalski A 2003 Proc. SPIE 4999 431Google Scholar

    [2]

    Rogalski A 2005 Rep. Prog. Phys. 68 2267Google Scholar

    [3]

    Chu J H, Sher A 2008 Physics and Properties of Narrow Gap Semiconductors (New York: Springer) pp383−392

    [4]

    魏来明, 刘新智, 俞国林, 高矿红, 王奇伟, 林铁, 郭少令, 魏彦峰, 杨建荣, 何力 2013 红外与毫米波学报 32 141Google Scholar

    Wei L M, Liu X Z, Yu G L, Gao K H, Wang Q W, Lin T, Guo S L, Wei Y F, Yang J R, He L, Dai N, Chu J H 2013 J. Infrared Millim. Waves 32 141Google Scholar

    [5]

    Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757Google Scholar

    [6]

    Konig M, Wiedmann S, Brune C, Roth A, Buhmann H, Molenkamp L W, Qi X L, Zhang S C 2007 Science 318 766Google Scholar

    [7]

    Ruan J W, Jian S K, Yao H, Zhang H J, Zhang S C, Xing D Y 2016 Nat. Commun. 7 11136Google Scholar

    [8]

    Leubner P, Lunczer L, Brüne C, Buhmann H, Molenkamp L W 2016 Phys. Rev. Lett. 117 086403Google Scholar

    [9]

    Tomaka G, Grendysa J, Marchewka M, Śliż P, Becker C R, Stadler A, Sheregii E M 2017 Opto-Electron. Rev. 25 188Google Scholar

    [10]

    Shayegan M, Karrai K, Shkolnikov Y P, Vakili K, de poortere E P, Manus S 2003 Appl. Phys. Lett. 83 5235Google Scholar

    [11]

    Jo I, Mueed M A, Pfeiffer L N, West K W, Baldwin K W, Winkler R, Padmanabhan M, Shayegan M 2017 Appl. Phys. Lett. 110 252103Google Scholar

    [12]

    Koduvayur S P, Lyanda-Geller Y, Khlebnikov S, Csathy G, Manfra M J, Pfeiffer L N, West K W, Rokhinson L P 2011 Phys. Rev. Lett. 106 016804Google Scholar

    [13]

    Habib B, Shabani J, de poortere E P, Shayegan M, Winkler R 2007 Phys. Rev. B 75 153304Google Scholar

    [14]

    Seidl S, Kroner M, Högele A, Karrai K, Warburton R J, Badolato A, Petroff P M 2006 Appl. Phys. Lett. 88 203113Google Scholar

    [15]

    Hui Y Y, Liu X F, Jie W J, Chan N Y, Hao J H, Hsu Y-T, Li L-J, Guo W L, Lau S P 2013 ACS Nano 7 7126Google Scholar

    [16]

    Tiemann L, Mueller S, Wu Q S, Tschirky T, Ensslin K, Wegscheider W, Troyer M, Soluyanov A A, Ihn T 2017 Phys. Rev. B 95 115108Google Scholar

    [17]

    Wei L M, Gao K H, Liu X Z, Yu G, Wang Q W, Lin T, Guo S L, Wei Y F, Yang J R, He L, Dai N, Chu J H, Austing D G 2013 Appl. Phys. Lett. 102 012108Google Scholar

    [18]

    Palm E C, Szott W, Kobiela P S, Kirk W P, Schiebel R A, Reed M A 1988 J. Vac. Sci. Technol. A 6 2716Google Scholar

    [19]

    高矿红, 魏来明, 俞国林, 杨睿, 林铁, 魏彦锋, 杨建荣, 孙雷, 戴宁, 褚君浩 2012 物理学报 61 027301

    Gao K H, Wei L M, Yu G L, Yang R, Lin T, Wei Y F, Yang J R, Sun L, Dai N, Chu J H 2012 Acta Phys. Sin. 61 027301

    [20]

    van der Pauw L J 1958 Philips Tech. Rev. 20 220

    [21]

    Capper P, Garland J 2010 Mercury Cadmium Telluride (West Sussex: A John Wiley and Sons Ltd.) pp113–129

    [22]

    van der Burgt M, Karavolas V C, Peeters F M, Singleton J, Nicholas R J, Herlach F, Harris J J, Van Hove M, Borghs G 1995 Phys. Rev. B 52 12218Google Scholar

    [23]

    沈丹萍, 张晓东, 孙艳, 康亭亭, 戴宁, 褚君浩, 俞国林 2017 物理学报 66 247301Google Scholar

    Shen D P, Zhang X D, Sun Y, Kang T T, Dai N, Chu J H, Yu G L 2017 Acta Phys. Sin. 66 247301Google Scholar

    [24]

    Han H, Zhang Y, Gao G Y, Yao K L 2013 Solid State Commun. 153 31Google Scholar

    [25]

    Gunawan O, Shkolnikov Y P, Vakili K, Gokmen T, de poortere E P, Shayegan M 2006 Phys. Rev. Lett. 97 186404Google Scholar

    [26]

    Ono Y 1982 J. Phys. Soc. Jpn. 51 237Google Scholar

  • 图 1  样品结构示意图, 其中箭头表示对压电陶瓷施加正偏压时的应力方向

    Fig. 1.  Schematic diagram of the sample, and the arrows indicate the direction of strain when positive voltage is applied.

    图 2  样品的X射线双晶衍射曲线

    Fig. 2.  DCXRD of the sample.

    图 3  (a) 1.5 K温度下, HgCdTe样品在磁场中的SdH振荡图; (b)去背底处理后的SdH振荡曲线

    Fig. 3.  (a) The longitudinal resistance of HgCdTe as function of magnetic field at 1.5 K; (b) remove the background resistance from SdH oscillations.

    图 4  填充因子ν与磁场倒数1/B的变化关系及拟合直线

    Fig. 4.  Relationship between the filling factor ν and the reciprocal 1/B of the magnetic field and the fitting line.

    图 5  1.5 K温度下样品在不同磁场条件下电阻随压电陶瓷偏压的变化

    Fig. 5.  Voltage dependence of resistance under different magnetic field at 1.5 K.

  • [1]

    Rogalski A 2003 Proc. SPIE 4999 431Google Scholar

    [2]

    Rogalski A 2005 Rep. Prog. Phys. 68 2267Google Scholar

    [3]

    Chu J H, Sher A 2008 Physics and Properties of Narrow Gap Semiconductors (New York: Springer) pp383−392

    [4]

    魏来明, 刘新智, 俞国林, 高矿红, 王奇伟, 林铁, 郭少令, 魏彦峰, 杨建荣, 何力 2013 红外与毫米波学报 32 141Google Scholar

    Wei L M, Liu X Z, Yu G L, Gao K H, Wang Q W, Lin T, Guo S L, Wei Y F, Yang J R, He L, Dai N, Chu J H 2013 J. Infrared Millim. Waves 32 141Google Scholar

    [5]

    Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757Google Scholar

    [6]

    Konig M, Wiedmann S, Brune C, Roth A, Buhmann H, Molenkamp L W, Qi X L, Zhang S C 2007 Science 318 766Google Scholar

    [7]

    Ruan J W, Jian S K, Yao H, Zhang H J, Zhang S C, Xing D Y 2016 Nat. Commun. 7 11136Google Scholar

    [8]

    Leubner P, Lunczer L, Brüne C, Buhmann H, Molenkamp L W 2016 Phys. Rev. Lett. 117 086403Google Scholar

    [9]

    Tomaka G, Grendysa J, Marchewka M, Śliż P, Becker C R, Stadler A, Sheregii E M 2017 Opto-Electron. Rev. 25 188Google Scholar

    [10]

    Shayegan M, Karrai K, Shkolnikov Y P, Vakili K, de poortere E P, Manus S 2003 Appl. Phys. Lett. 83 5235Google Scholar

    [11]

    Jo I, Mueed M A, Pfeiffer L N, West K W, Baldwin K W, Winkler R, Padmanabhan M, Shayegan M 2017 Appl. Phys. Lett. 110 252103Google Scholar

    [12]

    Koduvayur S P, Lyanda-Geller Y, Khlebnikov S, Csathy G, Manfra M J, Pfeiffer L N, West K W, Rokhinson L P 2011 Phys. Rev. Lett. 106 016804Google Scholar

    [13]

    Habib B, Shabani J, de poortere E P, Shayegan M, Winkler R 2007 Phys. Rev. B 75 153304Google Scholar

    [14]

    Seidl S, Kroner M, Högele A, Karrai K, Warburton R J, Badolato A, Petroff P M 2006 Appl. Phys. Lett. 88 203113Google Scholar

    [15]

    Hui Y Y, Liu X F, Jie W J, Chan N Y, Hao J H, Hsu Y-T, Li L-J, Guo W L, Lau S P 2013 ACS Nano 7 7126Google Scholar

    [16]

    Tiemann L, Mueller S, Wu Q S, Tschirky T, Ensslin K, Wegscheider W, Troyer M, Soluyanov A A, Ihn T 2017 Phys. Rev. B 95 115108Google Scholar

    [17]

    Wei L M, Gao K H, Liu X Z, Yu G, Wang Q W, Lin T, Guo S L, Wei Y F, Yang J R, He L, Dai N, Chu J H, Austing D G 2013 Appl. Phys. Lett. 102 012108Google Scholar

    [18]

    Palm E C, Szott W, Kobiela P S, Kirk W P, Schiebel R A, Reed M A 1988 J. Vac. Sci. Technol. A 6 2716Google Scholar

    [19]

    高矿红, 魏来明, 俞国林, 杨睿, 林铁, 魏彦锋, 杨建荣, 孙雷, 戴宁, 褚君浩 2012 物理学报 61 027301

    Gao K H, Wei L M, Yu G L, Yang R, Lin T, Wei Y F, Yang J R, Sun L, Dai N, Chu J H 2012 Acta Phys. Sin. 61 027301

    [20]

    van der Pauw L J 1958 Philips Tech. Rev. 20 220

    [21]

    Capper P, Garland J 2010 Mercury Cadmium Telluride (West Sussex: A John Wiley and Sons Ltd.) pp113–129

    [22]

    van der Burgt M, Karavolas V C, Peeters F M, Singleton J, Nicholas R J, Herlach F, Harris J J, Van Hove M, Borghs G 1995 Phys. Rev. B 52 12218Google Scholar

    [23]

    沈丹萍, 张晓东, 孙艳, 康亭亭, 戴宁, 褚君浩, 俞国林 2017 物理学报 66 247301Google Scholar

    Shen D P, Zhang X D, Sun Y, Kang T T, Dai N, Chu J H, Yu G L 2017 Acta Phys. Sin. 66 247301Google Scholar

    [24]

    Han H, Zhang Y, Gao G Y, Yao K L 2013 Solid State Commun. 153 31Google Scholar

    [25]

    Gunawan O, Shkolnikov Y P, Vakili K, Gokmen T, de poortere E P, Shayegan M 2006 Phys. Rev. Lett. 97 186404Google Scholar

    [26]

    Ono Y 1982 J. Phys. Soc. Jpn. 51 237Google Scholar

  • [1] 孙海明. 一维螺旋型Se原子链中的Rashba效应和平带性质. 物理学报, 2022, 71(14): 147102. doi: 10.7498/aps.71.20220646
    [2] 刘亦轩, 李昭, 汤浩正, 逯景桐, 李敬锋, 龚文, 王轲. 晶粒尺寸对钙钛矿型压电陶瓷压电性能的影响. 物理学报, 2020, 69(21): 217704. doi: 10.7498/aps.69.20201079
    [3] 郑隆立, 齐世超, 王春明, 石磊. 高居里温度铋层状结构钛钽酸铋(Bi3TiTaO9)的压电、介电和铁电特性. 物理学报, 2019, 68(14): 147701. doi: 10.7498/aps.68.20190222
    [4] 刘嘉豪, 杨晓阔, 危波, 李成, 张明亮, 李闯, 董丹娜. 基于倾斜纳磁体翻转倾向性的与(或)逻辑门应力模型. 物理学报, 2019, 68(1): 017501. doi: 10.7498/aps.68.20181621
    [5] 沈丹萍, 张晓东, 孙艳, 康亭亭, 戴宁, 褚君浩, 俞国林. 负带隙HgCdTe体材料的磁输运特性研究. 物理学报, 2017, 66(24): 247301. doi: 10.7498/aps.66.247301
    [6] 丁琨, 武雪飞, 窦秀明, 孙宝权. 电驱动金刚石对顶砧低温连续加压装置. 物理学报, 2016, 65(3): 037701. doi: 10.7498/aps.65.037701
    [7] 侯佳佳, 赵刚, 谭巍, 邱晓东, 贾梦源, 马维光, 张雷, 董磊, 冯晓霞, 尹王保, 肖连团, 贾锁堂. 基于压电陶瓷与光纤电光调制器双通道伺服反馈的激光相位锁定实验研究. 物理学报, 2016, 65(23): 234204. doi: 10.7498/aps.65.234204
    [8] 李立明, 宁锋, 唐黎明. 量子局域效应和应力对GaSb纳米线电子结构影响的第一性原理研究. 物理学报, 2015, 64(22): 227303. doi: 10.7498/aps.64.227303
    [9] 徐悦, 张泽宇, 金钻明, 潘群峰, 林贤, 马国宏, 程振祥. La, Nb共掺杂BiFeO3薄膜中的光致应变效应及应力调控. 物理学报, 2014, 63(11): 117801. doi: 10.7498/aps.63.117801
    [10] 凌进中, 黄元申, 王中飞, 王琦, 张大伟, 庄松林. 可调谐型金属线栅偏振器的特性研究. 物理学报, 2013, 62(14): 144214. doi: 10.7498/aps.62.144214
    [11] 朱敏昊, 吴学健, 尉昊赟, 张丽琼, 张继涛, 李岩. 基于飞秒光频梳的压电陶瓷闭环位移控制系统. 物理学报, 2013, 62(7): 070702. doi: 10.7498/aps.62.070702
    [12] 高矿红, 魏来明, 俞国林, 杨睿, 林铁, 魏彦锋, 杨建荣, 孙雷, 戴宁, 褚君浩. HgCdTe反型层的磁输运性质. 物理学报, 2012, 61(2): 027301. doi: 10.7498/aps.61.027301
    [13] 殷菲, 胡伟达, 全知觉, 张波, 胡晓宁, 李志锋, 陈效双, 陆卫. 激光束诱导电流法提取HgCdTe光伏探测器的电子扩散长度. 物理学报, 2009, 58(11): 7884-7890. doi: 10.7498/aps.58.7884
    [14] 孙琳, 褚君浩, 杨平雄, 冯楚德. Sr位Nd掺杂对SrBi2Nb2O9性能的影响及机理研究. 物理学报, 2009, 58(8): 5790-5797. doi: 10.7498/aps.58.5790
    [15] 高宏玲, 李东临, 周文政, 商丽燕, 王宝强, 朱战平, 曾一平. 不同量子阱宽度的InP基In0.53GaAs/In0.52AlAs高电子迁移率晶体管材料二维电子气的性能研究. 物理学报, 2007, 56(8): 4955-4959. doi: 10.7498/aps.56.4955
    [16] 周忠堂, 郭丽伟, 邢志刚, 丁国建, 谭长林, 吕 力, 刘 建, 刘新宇, 贾海强, 陈 弘, 周均铭. AlGaN/AlN/GaN结构中二维电子气的输运特性. 物理学报, 2007, 56(10): 6013-6018. doi: 10.7498/aps.56.6013
    [17] 孙 涛, 陈兴国, 胡晓宁, 李言谨. HgCdTe长波光伏探测器的表面漏电流及1/f噪声研究. 物理学报, 2005, 54(7): 3357-3362. doi: 10.7498/aps.54.3357
    [18] 仇志军, 桂永胜, 疏小舟, 戴宁, 郭少令, 君浩. HgTe/HgCdTe量子阱中巨大电子Rashba自旋分裂. 物理学报, 2004, 53(4): 1186-1190. doi: 10.7498/aps.53.1186
    [19] 陈建新, 李爱珍, 任尧成, K.Friedland. 赝配InGaAs/InAlAs调制掺杂异质结构的Shubnikov-de Haas振荡. 物理学报, 1998, 47(5): 796-801. doi: 10.7498/aps.47.796
    [20] 郑国珍, 郭少令, 汤定元. n-Hg1-xCdxTe的Shubnikov-de Haas振荡. 物理学报, 1987, 36(1): 114-119. doi: 10.7498/aps.36.114
计量
  • 文章访问数:  9568
  • PDF下载量:  224
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-02
  • 修回日期:  2019-12-12
  • 刊出日期:  2020-03-05

/

返回文章
返回