搜索

x
中国物理学会期刊

经式8-羟基喹啉铝的光谱与激发性质密度泛函

CSTR: 32037.14.aps.69.20191453

Density functional theory calculation of spectrum and excitation properties of mer-Alq3

CSTR: 32037.14.aps.69.20191453
PDF
HTML
导出引用
  • 经式8-羟基喹啉铝(mer-Alq3)是一种光电性能优良的小分子有机半导体发光材料. 本文采用密度泛函理论(DFT)B3LYP/6-31G*方法和基组对其进行结构优化, 计算并研究了该分子的红外光谱、拉曼光谱和前线轨道. 计算得到的红外光谱、拉曼光谱均与实验相符. 前线轨道表明基态最高占据轨道(HOMO)的电子云主要集中在苯酚环, 最低未占据轨道(LUMO)的电子云主要集中在吡啶环. 用含时密度泛函理论(TD-DFT)计算得到紫外-可见吸收光谱, 采用空穴-电子分析法研究了电子激发特征. 结果表明: 电子从基态到激发态的跃迁, 主要是8-羟基喹啉环内或环间的电荷转移, 以π-π*跃迁为主, 包括局域激发和电荷转移激发两种类型. 本工作对mer-Alq3分子发光机理提出更深入的认识, 能为进一步提高该分子发光效率和调控分子的发光范围提供一定的理论指导.

     

    Meridional tris(8-hydroxyquinoline)aluminum (III) (mer-Alq3) is an organometallic semiconductor material with phenomenal photo-electric properties. In order to understand the molecular luminescence properties of mer-Alq3, the density functional theoretical (B3LYP) method with 6-31G* basis set is employed to calculate its structure, infrared spectrum and Raman spectrum and the frontier molecular orbital of its ground state. The UV-vis absorption and the excited state characteristics are investigated by the time-dependent density functional theory (TD-DFT) method. The results show that the calculated spectral characteristics are in good agreement with the experimental data. The electron cloud of the highest occupied molecular orbital (HOMO) is located mostly on the phenoxide ring, whereas that of the lowest unoccupied molecular orbital (LUMO) sits on the pyridine ring. The absorption peaks of the UV-visible absorption spectrum are located in the visible and ultraviolet region. S0→S2 is attributed to the superposition of the π-π* local excitation in the direction from benzene ring to pyridine ring and the n-π* local excitation in the direction from oxygen atom to pyridine ring. The π-π* local excitation from benzene ring to pyridine ring is S0→S4. The superposition of π-n local excitation from benzene to carbon and n-n local excitation from oxygen to carbon are excited by S0→S11. S0→S14 is charge-transfer excitation and contributed by the superposition of π-π* in the direction from benzene ring to pyridine ring and n-π* in the direction from oxygen atom to pyridine ring. This work is significant for understanding the basic properties of mer-Alq3 and the mechanisms of electron excitations. It provides a deeper insight into the luminescence mechanism of mer-Alq3, thus playing a guidance role in further improving the luminescence efficiency and regulating the spectral range of the light-emitting mer-Alq3.

     

    目录

    /

    返回文章
    返回