搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

周期驱动量子伊辛模型中非热统计的形成与抑制

江璐冰 李宁轩 吉凯

引用本文:
Citation:

周期驱动量子伊辛模型中非热统计的形成与抑制

江璐冰, 李宁轩, 吉凯

Formation and suppression of nonthermal statistics in peridically driven quantum Ising models

Jiang Lu-Bing, Li Ning-Xuan, Ji Kai
PDF
HTML
导出引用
  • 在一维伊辛模型基础上, 采用严格对角化方法研究孤立量子系统在周期驱动下量子微正则统计形成与抑制的条件. 研究表明用纵向磁场驱动时伊辛模型不能形成量子微正则统计, 用横向磁场驱动时可出现部分形成的趋势, 如果同时在伊辛模型内引入局域随机磁场则可完全实现. 量子微正则统计分布在系统中的形成或抑制取决于弗洛凯算符对量子系统作用的效果, 可通过信息熵定量描述, 信息熵越大则时间演化越能有效地遍历希尔伯特空间, 从而形成量子微正则统计. 这一行为是孤立量子系统可被热化的反映.
    In classic statistical physics, an isolated system corresponds to a constant energy shell in the phase space, which can be described by the microcanonical ensemble. While, for an isolated quantum system, the conventional treatment is to subject the system to a narrow energy window in the Hilbert space instead of the energy shell in classical phase space, and then confine the participating eigen states of system wave function in the narrow window, so that the microcanonical ensemble can be recovered in the framework of quantum mechanics. Apart from the traditional theory, there is a more self-consistent description for the isolated quantum system, that is, the quantum microcanonical (QMC) ensemble. The QMC ensemble abandons the narrow energy window assumption, and allows all the eigen states to contribute to the system wave function on condition that the system average energy is fixed at a given value. At the same time, the total occupation probability of these eigen states is conserved to unity. The most probable probability distribution obtained in the Hilbert space for an isolated quantum system according to the constraints specified above is called the QMC statistics. There is a clear difference between the QMC distribution and the traditional Gibbs distribution having an exponential form. Through the external periodic drives, an isolated quantum system may produce the QMC distribution, which is a consequence of the interplay between internal origins and external drives. In this paper, we investigate the conditions for the formation and suppression of QMC distribution by using the exact diagonalization method based on the one-dimensional Ising model. We start with the one-dimensional Ising model and focus on three different cases of periodic drives: systems under vertical (along the z axis), horizontal (along the x axis), horizontal magnetic field together with random internal (along the y axis) magnetic field. For all these three cases, the external magnetic fields are set to be ordinary rectangular pulses and the Gibbs distributions are taken as the initial states. We then study the evolutions and their asymptotic tendencies to the QMC distributions of the eigen state occupation probability under the effect of external periodic magnetic field. The results show that under the vertical magnetic field, the eigen state occupation probability does not change, and the system cannot produce the QMC distribution; under the horizontal magnetic field, the system tends to display a QMC distribution, but only partly; under horizontal and random internal magnetic fields at the same time, the transition to QMC distribution can be fully realized, and finally the system is almost completely thermalized. In order to clarify the different behaviors of the Ising model in the three cases, we also calculate the information entropy of the eigen state of Floquet operator in the eigen representation of the unperturbed Hamiltonian. We find that as the information entropy of the Floquet eigen state increases, the convergence to the QMC distribution in the Hilbert space is improved. We also notice that the mechanism for the emergence of QMC distribution is closely related to the thermalization effect of the isolated quantum system. Our analyses show that when the magnetic field is vertical, it cannot trigger the thermalization of the system. When the magnetic field is horizontal, the system becomes partly, but not completely, thermalized. When we add a horizontal periodic magnetic field and a random internal magnetic field at the same time, the system can be completely thermalized to infinite temperature. Thus, the asymptotic behavior towards the QMC statistics is a reflection of the fact that the isolated quantum system is thermalizable under periodic drives.
      通信作者: 吉凯, kji@shnu.edu.cn
    • 基金项目: 省部级-上海市浦江人才计划(17PJ1407400)
      Corresponding author: Ji Kai, kji@shnu.edu.cn
    [1]

    Arute F, Arya K, Babbush R, et al. 2019 Nature 574 505Google Scholar

    [2]

    Tomza M, Jachymski K, Gerritsma R, Negretti A, Calarco T, Idziaszek Z, Julienne P S 2019 Rev. Mod. Phys. 91 035001Google Scholar

    [3]

    Shi F, Kong X, Wang P, Kong F, Zhao N, Liu R B, Du J 2014 Nat. Phys. 10 21Google Scholar

    [4]

    Gao W B, Imamoglu A, Bernien H, Hanson R 2015 Nat. Photonics 9 363Google Scholar

    [5]

    Huang K 1987 Statistical Mechanics (New York: Wiley) pp131–135

    [6]

    Pathria R K, Beale P D 2011 Statistical Mechanics (3rd Ed.) (Boston: Academic) pp115–119

    [7]

    Popescu S, Short A J, Winter A 2006 Nat. Phys. 2 754Google Scholar

    [8]

    Goldstein S, Lebowitz J L, Tumulka R, Zanghì N 2006 Phys. Rev. Lett. 96 050403Google Scholar

    [9]

    Reimann P 2007 Phys. Rev. Lett. 99 160404Google Scholar

    [10]

    Mahler G, Gemmer J, Michel M 2005 Physica E 29, 53Google Scholar

    [11]

    Levine R D 1988 J. Stat. Phys. 52 1203Google Scholar

    [12]

    Buch V, Gerber R B, Ratner M A 1982 J. Chem. Phys. 76 5397Google Scholar

    [13]

    Brody D C, Hughston L P 1998 J. Math. Phys. 39 6502Google Scholar

    [14]

    Bender C M, Brody D C, Hook D W 2005 J. Phys. A: Math. Gen. 38 L607Google Scholar

    [15]

    Naudts J, Van der Straeten E 2006 J. Stat. Mech.: Theory Exp. 2006 06015Google Scholar

    [16]

    Fine B V 2009 Phys. Rev. E 80 051130Google Scholar

    [17]

    Campisi M 2013 New J. Phys. 15 115008Google Scholar

    [18]

    Ji K, Fine B V 2011 Phys. Rev. Lett. 107 050401Google Scholar

    [19]

    D'Alessio L, Rigol M 2014 Phys. Rev. X 4 041048Google Scholar

    [20]

    Ji K, Fine B V 2018 Phys. Rev. Lett. 121 050602Google Scholar

    [21]

    Izrailev F M 1990 Phys. Rep. 196 299Google Scholar

    [22]

    Zelevinsky V, Brown B A, Frazier N, Horoi M 1996 Phys. Rep. 276 85Google Scholar

    [23]

    Borgonovi F, Izrailev F M, Santos L F, Zelevinsky V G 2016 Phys. Rep. 626 1Google Scholar

    [24]

    Basko D M, Aleiner I L, Altshuler B L 2006 Ann. Phys. 321 1126Google Scholar

    [25]

    Abanin D A, Altman E, Bloch I, Serbyn M 2019 Rev. Mod. Phys. 91 021001Google Scholar

  • 图 1  外磁场强度随时间做周期性变化示意图

    Fig. 1.  Schematic plot of external magnetic field intensity with a periodic change.

    图 2  一维伊辛模型在纵向(沿$z$轴)周期磁脉冲作用下本征态占据概率不发生任何变化, 其中$n$是磁脉冲作用的次数, 图上每一数据点代表相邻32个态的平均值, 绿线和红线分别是e指数和QMC拟合的结果

    Fig. 2.  The eigenstate occupation numbers of one-dimensional Ising model keep invariant under longitudinal periodic magnetic pulses (along the $z$-axis). Here $n$ is the number of magnetic pulses, each point in the graph represents the mean of 32 neighboring states, the green and red curves are the exponential and QMC fitting results, respectively.

    图 3  一维伊辛模型的态密度, 其中粗红线: 无外场伊辛模型; 蓝线: 纵场伊辛模型; 细绿线: 横场伊辛模型

    Fig. 3.  DOS of one-dimensional Ising model. Thick red curve: Ising model without external field; blue curve: Ising model with a longitudinal field; thin green curve: Ising model with a transverse field.

    图 4  一维伊辛模型在横向(沿$x$轴)周期磁脉冲作用$n$次后本征态占据概率的分布 (a) n = 0; (b) n = 2; (c) n = 16; (d) n = 103. 图中每一点代表相邻32个态的平均值, 绿线和红线分别是e指数和QMC拟合的结果

    Fig. 4.  Distribution of eigenstate occupation numbers of one-dimensional Ising model after $n$ periodic transverse (along x-axis) magnetic pulses: (a) n = 0; (b) n = 2; (c) n = 16; (d) n = 103. Each point in the graph represents the mean of 32 states, the green and red curves are the exponential and QMC fitting results, respectively.

    图 5  本征态占据概率分布 (a) n = 0; (b) n = 4; (c) n = 14; (d) n = 100. 与图4类似的情况, 区别是在模型中加入了微弱的随机局域磁场

    Fig. 5.  Distribution of eigenstate occupation numbers: (a) n = 0; (b) n = 4; (c) n = 14; (d) n = 100. The situation is similar to that of Fig. 4 except for the introduction of weak random local magnetic fields.

    图 6  一维伊辛模型在横向(沿$x$轴)周期磁脉冲作用下弗洛凯本征态在哈密顿量${H_{{\rm{on}}}}$的本征态表象下的信息熵 (a) 系统不含随机局域磁场; (b) 系统包含随机局域磁场. 其中红、绿、蓝点分别对应磁脉冲的时间间隔为${t_{{\rm{off}}}} = 1, \;2, \;5$, 黑色虚线是一维伊辛模型在纵向(沿$z$轴)周期磁脉冲作用下的信息熵分布

    Fig. 6.  Information entropy of the Floquet eigenstates in the eigenstate representation of ${H_{{\rm{on}}}}$ for the one-dimensional Ising model under transverse (along x-axis) periodic magnetic pulses: (a) Systems without random local magnetic fields; (b) systems with random local magnetic fields, where the red, green, and blue points correspond to magnetic pulse interval ${t_{{\rm{off}}}} = 1, \;2, \;5$, respectively, and the black dashed lines are the distribution of information entropy for the one-dimensional Ising model under longitudinal (along z-axis) periodic magnetic pulses.

    图 7  一维伊辛模型在横场(沿x轴)周期磁脉冲作用下单个自旋平均能量随脉冲数n的变化 (a) 系统不含随机局域磁场; (b) 系统含随机局域磁场. 这里红方块、绿圆圈、蓝三角分别对应磁脉冲的时间间隔为${t_{{\rm{off}}}} = 1, \;2, \;5$, 黑色虚线是一维伊辛模型在纵向(沿z轴)周期磁脉冲作用下的单自旋平均能量

    Fig. 7.  Average energy per spin versus pulse number n for the one-dimensional Ising model under transverse (along x-axis) periodic magnetic pulses: (a) Systems without random local magnetic fields; (b) systems with random local magnetic fields, where the red squares, green circles, and blue triangles correspond to magnetic pulse interval ${t_{{\rm{off}}}} = 1, \;2, \;5$, respectively, and the black dashed lines are the average energy per spin for the one-dimensional Ising model under longitudinal (along z-axis) periodic magnetic pulses.

  • [1]

    Arute F, Arya K, Babbush R, et al. 2019 Nature 574 505Google Scholar

    [2]

    Tomza M, Jachymski K, Gerritsma R, Negretti A, Calarco T, Idziaszek Z, Julienne P S 2019 Rev. Mod. Phys. 91 035001Google Scholar

    [3]

    Shi F, Kong X, Wang P, Kong F, Zhao N, Liu R B, Du J 2014 Nat. Phys. 10 21Google Scholar

    [4]

    Gao W B, Imamoglu A, Bernien H, Hanson R 2015 Nat. Photonics 9 363Google Scholar

    [5]

    Huang K 1987 Statistical Mechanics (New York: Wiley) pp131–135

    [6]

    Pathria R K, Beale P D 2011 Statistical Mechanics (3rd Ed.) (Boston: Academic) pp115–119

    [7]

    Popescu S, Short A J, Winter A 2006 Nat. Phys. 2 754Google Scholar

    [8]

    Goldstein S, Lebowitz J L, Tumulka R, Zanghì N 2006 Phys. Rev. Lett. 96 050403Google Scholar

    [9]

    Reimann P 2007 Phys. Rev. Lett. 99 160404Google Scholar

    [10]

    Mahler G, Gemmer J, Michel M 2005 Physica E 29, 53Google Scholar

    [11]

    Levine R D 1988 J. Stat. Phys. 52 1203Google Scholar

    [12]

    Buch V, Gerber R B, Ratner M A 1982 J. Chem. Phys. 76 5397Google Scholar

    [13]

    Brody D C, Hughston L P 1998 J. Math. Phys. 39 6502Google Scholar

    [14]

    Bender C M, Brody D C, Hook D W 2005 J. Phys. A: Math. Gen. 38 L607Google Scholar

    [15]

    Naudts J, Van der Straeten E 2006 J. Stat. Mech.: Theory Exp. 2006 06015Google Scholar

    [16]

    Fine B V 2009 Phys. Rev. E 80 051130Google Scholar

    [17]

    Campisi M 2013 New J. Phys. 15 115008Google Scholar

    [18]

    Ji K, Fine B V 2011 Phys. Rev. Lett. 107 050401Google Scholar

    [19]

    D'Alessio L, Rigol M 2014 Phys. Rev. X 4 041048Google Scholar

    [20]

    Ji K, Fine B V 2018 Phys. Rev. Lett. 121 050602Google Scholar

    [21]

    Izrailev F M 1990 Phys. Rep. 196 299Google Scholar

    [22]

    Zelevinsky V, Brown B A, Frazier N, Horoi M 1996 Phys. Rep. 276 85Google Scholar

    [23]

    Borgonovi F, Izrailev F M, Santos L F, Zelevinsky V G 2016 Phys. Rep. 626 1Google Scholar

    [24]

    Basko D M, Aleiner I L, Altshuler B L 2006 Ann. Phys. 321 1126Google Scholar

    [25]

    Abanin D A, Altman E, Bloch I, Serbyn M 2019 Rev. Mod. Phys. 91 021001Google Scholar

  • [1] 鲍昌华, 范本澍, 汤沛哲, 段文晖, 周树云. 量子材料的弗洛凯调控. 物理学报, 2023, 72(23): 234202. doi: 10.7498/aps.72.20231423
    [2] 杜啸颖, 俞振华. 分形格点中伊辛模型的临界行为. 物理学报, 2023, 72(8): 080503. doi: 10.7498/aps.72.20222432
    [3] 吴建达. 从横场伊辛链到量子E8 可积模型. 物理学报, 2022, (): . doi: 10.7498/aps.71.20211836
    [4] 王骁, 杨家豪, 吴建达. 从横场伊辛链到量子E8可积模型. 物理学报, 2021, 70(23): 230504. doi: 10.7498/aps.70.20211836
    [5] 黄建邦, 南虎, 张锋, 张佳乐, 刘来君, 王大威. 弛豫铁电体弥散相变与热滞效应的伊辛模型. 物理学报, 2021, 70(11): 110501. doi: 10.7498/aps.70.20202019
    [6] 丁明松, 江涛, 董维中, 高铁锁, 刘庆宗, 傅杨奥骁. 热化学模型对高超声速磁流体控制数值模拟影响分析. 物理学报, 2019, 68(17): 174702. doi: 10.7498/aps.68.20190378
    [7] 邱超, 张会臣. 正则系综条件下空化空泡形成的分子动力学模拟. 物理学报, 2015, 64(3): 033401. doi: 10.7498/aps.64.033401
    [8] 王琪, 王晓茜. 一维倾斜场伊辛模型中的纠缠特性. 物理学报, 2013, 62(22): 220301. doi: 10.7498/aps.62.220301
    [9] 余大启, 陈 民. 刚性多原子分子的正则系综分子动力学算法. 物理学报, 2006, 55(4): 1628-1633. doi: 10.7498/aps.55.1628
    [10] 陶永梅, 蒋 青, 曹海霞. 用横场伊辛模型研究应力对铁电薄膜的热力学性质的影响. 物理学报, 2005, 54(1): 274-279. doi: 10.7498/aps.54.274
    [11] 王丽萍, 朱建阳. 经典Kerr黑洞和量子Kerr黑洞系统的微正则系综理论描述与统计“自举”条件. 物理学报, 2005, 54(11): 5504-5510. doi: 10.7498/aps.54.5504
    [12] 张雅男, 晏世雷. 随机横场与晶场作用混合自旋系统的热力学性质. 物理学报, 2003, 52(11): 2890-2895. doi: 10.7498/aps.52.2890
    [13] 张 磊, 钟维烈. 横场-伊辛模型中BaTiO3的铁电行为. 物理学报, 2000, 49(11): 2296-2299. doi: 10.7498/aps.49.2296
    [14] 周云松, 陈金昌, 林多梁. 多层伊辛膜的磁学性质. 物理学报, 2000, 49(12): 2477-2481. doi: 10.7498/aps.49.2477
    [15] 王福高, 胡嘉桢. Union Jack晶格上伊辛模型的自由费密近似解. 物理学报, 1993, 42(5): 853-858. doi: 10.7498/aps.42.853
    [16] 王振林, 高瞻, 李振亚. 自旋S=1淬灭键稀释蜂窝格子伊辛模型. 物理学报, 1991, 40(9): 1525-1532. doi: 10.7498/aps.40.1525
    [17] 王振林, 李振亚. 自旋S=1座稀释蜂窝格子的伊辛模型. 物理学报, 1990, 39(8): 145-153. doi: 10.7498/aps.39.145
    [18] 唐坤发, 胡嘉桢. 伊辛模型的四分支临界面及其临界行为. 物理学报, 1988, 37(3): 515-519. doi: 10.7498/aps.37.515
    [19] 唐坤发, 胡嘉桢. 推广伊辛自旋模型的临界温度曲线. 物理学报, 1988, 37(1): 132-135. doi: 10.7498/aps.37.132
    [20] 唐坤发, 胡嘉桢. 一种推广伊辛自旋模型的实空间重正化群理论. 物理学报, 1986, 35(8): 1048-1054. doi: 10.7498/aps.35.1048
计量
  • 文章访问数:  6417
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-29
  • 修回日期:  2020-04-18
  • 上网日期:  2020-05-09
  • 刊出日期:  2020-07-20

/

返回文章
返回