搜索

x
中国物理学会期刊

倾斜多孔介质方腔内纳米流体自然对流的格子Boltzmann方法模拟

CSTR: 32037.14.aps.69.20200308

Numerical simulation of natural convection of nanofluids in an inclined square porous enclosure by lattice Boltzmann method

CSTR: 32037.14.aps.69.20200308
PDF
HTML
导出引用
  • 利用格子玻尔兹曼方法(lattice Boltzmann method, LBM)对倾斜多孔介质方腔内Al2O3-H2O纳米流体的自然对流进行数值模拟, 考虑了孔隙率(0.3 ≤ \epsilon ≤ 0.9)、瑞利数(103Ra ≤ 106)、纳米颗粒体积分数(0 ≤ ϕ ≤ 0.04)和倾斜角(0° ≤ γ ≤ 120°)等因素的影响, 研究了正弦温度分布边界条件下倾斜多孔介质方腔内纳米流体的自然对流传热机理. 结果表明: 若\epsilon γ保持不变时, 随着Ra数的增大, 热壁面处的平均努塞尔数(Nuave数)呈现出先减小后增大的趋势; 对于给定的Ra数, 当γ = 0°时, 随着孔隙率的增大, 热壁面处Nuave数逐渐增大, 当γ = 40°, 80°和120°时, Nuave数在\epsilon = 0.7左右时达到最大值; 若\epsilon Ra数保持不变, 当γ = 40°时, 方腔内的自然对流换热效率最强, 当γ = 80°时热壁面自然对流换热效率被削弱. 最后, 研究了纳米颗粒体积份数的影响, 当方腔施加一定倾角时, 热壁面处的Nuave数随着纳米颗粒体积分数的增大而增大.

     

    In this work, numerical simulation of nature convection of Al2O3-H2O nanofluid in an inclined square porous enclosure is investigated to analyze the influence of different physical parameters on fluid flow and heat transfer via the lattice Boltzmann method. Due to stable chemical properties and low price in the dispersion system, Al2O3-H2O nanofluid is widely used in the field of industrial heat transfer enhancement, which is the focus of present work. When the nanofluid is transport in a porous media, the Darcy-Brinkman-Forchheimer model is usually used to describe the porous media effects on nanofluid flow. Compared with uniform thermal boundary condition, the natural convection of nanofluids with non-uniform thermal boundary condition has not received much attention. In this paper, the sinusoidal boundary condition is applied to the left side wall to analyze the heat transfer mechanism of Al2O3-H2O nanofluid in the inclined square porous enclosure. The effect of porosity (0.3 ≤ \epsilon ≤ 0.9), Rayleigh number (103Ra ≤ 106), volume fraction of nanoparticle (0 ≤ ϕ ≤ 0.04), tilt angle (0° ≤ γ ≤ 120°) on the heat transfer performance are systematically investigated. Numerical results show that the non-uniform boundary condition can affect the heat transfer performance on Al2O3-H2O nanofluid with different physical quantities, which is different from the uniform boundary condition. When γ = 0° and Ra is fixed, the Nuave number (average Nusselt number) at the heated wall increases with porosity. When γ = 40°, 80° or 120°, the Nuave reaches its maximum value at \epsilon = 0.7. In addition, if \epsilon and Ra are fixed, the results show that the heat transfer performance is most efficient at γ = 40° whereas it is weakened at γ = 80°. Moreover, when different inclination angles are applied to the square cavity, the Nuave increases slightly with an augmentation of ϕ. In all, compared with the uniform temperature boundary condition, the effect of volume fraction of nanoparticles on the enhanced heat transfer is not significant, therefore, to improve the heat transfer performance of nanofluids with given ϕ and Ra, it is necessary to take advantage of the improvement of effective thermal conductivity for the nanofluids in porous media and the perturbation influence of inclination angles on the system together with using appropriate porosity and square cavity tilt angle to intervene the flow.

     

    目录

    /

    返回文章
    返回