搜索

x
中国物理学会期刊

基于光学tamm态的声光开关的研究

CSTR: 32037.14.aps.69.20200396

Research on acousto-optic switch based on optical tamm state

CSTR: 32037.14.aps.69.20200396
PDF
HTML
导出引用
  • 提出了一种基于光学tamm态(OTS)的声光开关方案. 该声光开关利用一维光子晶体异质结的OTS以及声光效应, 改变超声波振幅使得OTS的本征波长向短波方向发生漂移, 从而实现通断功能. 考虑了在一维光子晶体异质结中的声光效应, 建立了这种声光开关的理论模型, 利用COMSOL软件进行仿真研究. 研究结果表明, 通过是否施加一定振幅的超声波, 在1548.8—1551.7 nm波长范围内可实现消光比最低可达12 dB、插入损耗最高仅为0.97 dB的声光开关; 也可通过是否施加与入射光波长相应振幅的超声波, 实现1536.6—1543.3 nm波长范围内消光比最低可达12 dB, 插入损耗最高仅为0.99 dB的声光开关. 该声光开关的响应时间不超过13 ns, 具有消光比高且插入损耗低的特点, 在光通信领域具有良好的应用前景.

     

    An acousto-optic switch scheme based on optical tamm state (OTS) is proposed. The acousto-optic switch’s structure is one-dimensional photonic crystal heterostructure, which is composed of three materials: silicon dioxide, gallium arsenide and tellurium dioxide. All three materials are acousto-optic materials, which can ensure the acousto-optic effect when the ultrasonic wave and the light wave are incident at the same time. Due to the acousto-optic effect, the refractive index and thickness of one-dimensional photonic crystal heterostructures are changed by ultrasonic. The acousto-optic switch changes the ultrasonic amplitude to shift the intrinsic wavelength of OTS to the shorter wave direction. With the increase of ultrasonic amplitude, the intrinsic wavelength of OTS hardly changes after the amplitude exceeds 0.4 nm. This means that the ultrasonic wave with an amplitude of 0.4 nm can shift the intrinsic wavelength to 1538 nm. The acousto-optic switch realizes the on-off function within the permitted range. In this paper, the theoretical model of the acousto-optic switch is established. The propagation of ultrasonic wave in one-dimensional photonic crystal heterostructure is analyzed by theoretical model. The propagation of light in the medium after acousto-optic effect is analyzed by transmission matrix method. The simulation is carried out through COMSOL Multiphysics software. The results show OTS exists and localization can be seen in the electric field diagram. The acousto-optic switch of 1548.8–1551.7 nm can be realized by applying certain amplitude of ultrasonic or not. In this wavelength range, the extinction ratio is not lower than 12 dB and the insertion loss is not higher than 0.97 dB. The maximum extinction ratio is 13.17 dB, and the minimum insertion loss is only 0.65 dB. The acousto-optic switch of 1536.6–1543.3 nm can be realized by applying ultrasonic wave with amplitude corresponding to the length of incident light. In this wavelength range, the extinction ratio is not lower than 12 dB, and the insertion loss is not higher than 0.99 dB. The maximum extinction ratio is 13.15 dB, and the minimum insertion loss is only 0.65 dB. The response time of the acousto-optic switch is less than 13 ns. The acousto-optic switch has the characteristics of high extinction ratio and low insertion loss. It has a good application prospect and can be effectively applied in future optical communication.

     

    目录

    /

    返回文章
    返回