搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

X波段高效率速调型相对论返波管研究

杨德文 陈昌华 史彦超 肖仁珍 滕雁 范志强 刘文元 宋志敏 孙钧

引用本文:
Citation:

X波段高效率速调型相对论返波管研究

杨德文, 陈昌华, 史彦超, 肖仁珍, 滕雁, 范志强, 刘文元, 宋志敏, 孙钧

Investigation of an X band high efficiency klystron-like relativistic backward wave oscillator

Yang De-Wen, Chen Chang-Hua, Shi Yan-Chao, Xiao Ren-Zhen, Teng Yan, Fan Zhi-Qiang, Liu Wen-Yuan, Song Zhi-Min, Sun Jun
PDF
HTML
导出引用
  • 本文对一种高效率速调型RBWO进行了理论分析和实验研究. 通过理论分析, 给出两个预调制腔间距的选择依据; 提出一种高功率容量的椭圆形提取腔, 可使得提取腔内表面场强降低约25%; 分析了磁场分布对效率的影响, 结果表明: 使用特殊设计的引导磁场, 可克服器件转换效率对收集位置的强烈依赖; 分析了阴阳极间距对效率的影响, 结果表明: 随着阴阳极间距增大, 器件的最优工作电压降低, 并且效率有所提升. 在实验中获得X波段微波功率为2.15 GW, 脉宽达到25 ns, 转换效率为50%(± 5%). 实验结果与理论和数值模拟结果吻合.
    This paper investigates an X band high efficiency klystron-like relativistic backward wave oscillator (RBWO) in detail. The klystron-like RBWO consists of a pre-modulation cavity, a resonant reflector with a ridge, a sectional slow wave structure, and an extraction cavity. First, this paper gives some theoretical studies about beam modulation and energy extraction. For beam modulation, the optimized distance between the pre-modulation cavity and the resonant reflector is studied theoretically, and theoretical results agree well with simulation results. For energy extraction, an ellipse extraction cavity with high power capacity is come up with, and the electric field on the inner surface of the ellipse extraction cavity decreases by 25% in PIC simulation. Also, the paper analyzes the effect of the position of dumped electron on conversion efficiency. Interestingly, it’s found that the efficiency dramatically decreases with the increase of the distance between the extraction cavity and the position of dumped electron, which is caused by the increase of potential energy of electron and the decrease of electric field. Fortunately, we find that the use of guiding magnet with special magnetic field distribution almost eliminate this unfavorable effect. Besides, effects of the distance between the cathode and anode Lak are investigated. It’s shown that the optimized diode voltage decrease with the increase of the distance Lak, and the conversion efficiency is higher at larger Lak. The experimental studies are also given. The power capacity of ellipse extraction cavity is verified, also we find that the efficiency is enhanced by 10% and the width of microwave pulse increases by 7 ns when the roughness of RF structure surface is improved from Ra 0.4 μm to Ra 0.05 μm. Typically, the klystron-like RBWO outputs X band high power microwave with power of 2.15 GW, with pulse duration of 25 ns, and with conversion efficiency of 50%(± 5%). Experimental results agree well with theoretical and PIC simulation results.
      通信作者: 杨德文, yangdewen@nint.ac.cn
      Corresponding author: Yang De-Wen, yangdewen@nint.ac.cn
    [1]

    Nation 1970 J Appl. Phys. Lett. 17 491Google Scholar

    [2]

    Kovalev N F, Petelin M I, Raizer M D, Smorgonskii A V, Tsopp L E 1973 JETP Lett. 18 138

    [3]

    Bromborsky A, Still G W, Kehs R A, Clark C, Early L, Rohwein G, Poukey J 1989 J. Appl. Phys. 66 3871Google Scholar

    [4]

    Chen C H, Liu G Z, Huang W H, Song Z M, Fan J P, Wang H J 2002 IEEE Trans. Plasma Sci. 30 1108Google Scholar

    [5]

    Xiao R Z, Chen C H, Zhang X W, Sun J 2009 J. Appl. Phys. 105 053306Google Scholar

    [6]

    Xiao R Z, Zhang X W, Zhang L J, Li X Z, Zhang L G, Song W, Hu Y M, Sun J, Huo S F, Chen C H, Zhang Q Y, Liu G Z 2010 Laser Part. Beams 28 505Google Scholar

    [7]

    Tot’meninov E M, Vykhodtsev P V, Kitsanov S A, Klimov A I, Rostov V V 2011 Technical Physics 56 1009Google Scholar

    [8]

    Jin Z X, Zhang J, Yang J H, Zhong H H, Qian B L, Shu T, Zhang J D, Zhou S Y, Xu L R 2011 Rev. Sci. Instrum. 82 084704Google Scholar

    [9]

    Wu P, Fan J P, Teng Y, Shi Y C, Deng Y Q, S un 2014 J Phys. Plasmas 21 103110Google Scholar

    [10]

    Yang D W, Shi Y C, Xiao R Z, Teng Y, Sun J, Chen C H 2018 AIP Advances 8 095229Google Scholar

    [11]

    Korovin S D, Polevin S D, Roitman A M, Rostov V V 1996 Russian Physics Journal 39 1206Google Scholar

    [12]

    Yang D W, Chen C H, Xiao R Z, Shi Y C, Cao Y B, Teng Y, Sun J 2018 Phys. Plasmas 25 123101Google Scholar

    [13]

    Xiao R Z, Chen C H, Cao Y B, Sun J 2013 J. Appl. Phys. 114 213301Google Scholar

    [14]

    Rostov V V, Gunin A V, Tsygankov R V, Romanchenko I V, Yalandin M I 2018 IEEE Trans. Plasma Sci. 46 33Google Scholar

    [15]

    Rostov V V, Totmeninov E M, Tsygankov R V, Kurkan I K, Kovalchuk O B, Elchaninov A A, Stepchenko A S, Gunin A V, Konev V Y, Yushchenko A Y, Emelyanov E V 2018 IEEE Transactions on Electron Devices 65 3019Google Scholar

    [16]

    史彦超, 陈昌华, 肖仁珍, 滕雁, 邓昱群, 孙钧 2015 第十届全国高功率微波学术研讨会, 呼和浩特, 2015

    Shi Y C, Chen C H, Xiao R Z, Teng Y, Deng Y Q, Sun J 2015 The Tenth High Power Microwave Conference, Huhehot (in Chinese)

    [17]

    郭硕鸿 2008 电动力学 (第3版) (北京: 高等教育出版社)

    Guo S H 2008 Electrodynamics (3rd Ed.) (Beijing: Higher Education Press) (in Chinese)

    [18]

    Xiao R Z, Chen C H, Sun J, Zhang X W, Zhang L J 2011 Appl. Phys. Lett. 98 101502Google Scholar

    [19]

    Swegle J A, Poukey J W, Leifeste G T 1985 Physics of Fluids 28 2882Google Scholar

    [20]

    Cao Y B, Sun J, Zhang Y C, Song Z M, Wu P, Fan Z Q, Teng Y, He T, Chen C H 2018 IEEE Trans. Plasma Sci. 46 90

  • 图 1  一种高效率速调型相对论返波管结构图 (1 预调制腔; 2调制脊; 3 慢波结构; 4 提取腔; 5 电子束收集极; 6谐振腔反射器; 7电子束; 8 引导磁体; 9 阴极)

    Fig. 1.  Schematic of a high efficiency klystron-like RBWO. (1 pre-modulation cavity; 2 modulation ridge; 3 slow wave structure; 4 extraction cavity; 5 electron beam collector; 6 resonant reflector; 7 electron beam; 8 guiding magnet; 9 cathode)

    图 2  含两个预调制腔的预调制结构

    Fig. 2.  Pre-modulation structure with two cavities.

    图 3  两个调制腔间距L1对效率的影响

    Fig. 3.  Effect of the two modulation cavity spacing L1 on efficiency.

    图 4  提取腔改进的示意图 (a)矩形提取腔; (b)“理想”提取腔

    Fig. 4.  Schematic of enhanced extraction cavity: (a) Rectangular extraction cavity; (b) perfect extraction cavity.

    图 5  两种提取腔结构示意图 (a)矩形提取腔; (b)椭圆形提取腔

    Fig. 5.  Schematic of two extraction cavities: (a) Rectangular extraction cavity; (b) ellipse extraction cavity.

    图 6  PIC仿真中矩形提取腔中的场强分布 (a)电场分量Ez朝–z方向的情形; (b)电场分量Ez朝+z方向的情形

    Fig. 6.  Field distribution in rectangular extraction cavity in PIC simulation: (a) Ez orients –z direction; (b) Ez orients +z direction.

    图 7  PIC仿真中椭圆形提取腔中的纵向电场分布 (a)纵向电场Ez朝–z方向的情形; (b)纵向电场Ez朝+z方向的情形

    Fig. 7.  Longitudinal electric field distribution in ellipse extraction cavity in PIC simulation: (a) Ez orients –z direction; (b) Ez orients +z direction.

    图 8  超导磁体的磁场

    Fig. 8.  Magnetic field of superconductor magnet.

    图 9  螺线管磁场和超导磁场下的相空间图 (a)螺线管磁体的情形; (b)超导磁场的情形

    Fig. 9.  Phasespace of electron beam under solenoid and superconductor magnet: (a) Case with solenoid magnet; (b) case with superconductor magnet.

    图 10  螺线管磁场和超导磁场下的效率随Lec的变化

    Fig. 10.  Variation of efficiency with Lec under solenoid and superconductor magnet.

    图 11  PIC数值模拟中的典型结果 (a)输出功率; (b)频谱

    Fig. 11.  Typical results in PIC simulation: (a) Microwave power; (b) frequency spectrum.

    图 12  不同阴阳极间距Lak的电压规律 (a)效率随电压的变化; (b)频率随电压的变化

    Fig. 12.  Effect of diode voltage under different Lak: (a) Variation of efficiency with diode voltage; (b) variation of frequency with diode voltage.

    图 13  实验系统示意图

    Fig. 13.  Schematic of experiment system.

    图 14  速调型相对论返波管外观

    Fig. 14.  Picture of the Klystron-like RBWO.

    图 15  辐射场测量系统示意图

    Fig. 15.  Schematic of measurement system.

    图 16  检波器的标定曲线

    Fig. 16.  Calibration result of envelope detector.

    图 17  不同粗糙度的表面 (a)粗糙度Ra = 0.4; (b)粗糙度Ra = 0.05

    Fig. 17.  Surface with different roughness: (a) Roughness Ra = 0.4; (b) roughness Ra = 0.05.

    图 18  不同粗糙度时的输出波形 (a)粗糙度Ra = 0.4; (b)粗糙度Ra = 0.05. (通道1: 在线微波波形; 通道2, 3: 辐射场微波波形)

    Fig. 18.  Output waveform for different roughness: (a) Roughness Ra = 0.4; (b) Roughness Ra = 0.05. (channel 1, online microwave; channel 2 and 3, radiation field)

    图 19  不同粗糙度120个微波脉冲后的表面痕迹 (a)粗糙度Ra = 0.4; (b)粗糙度Ra = 0.05

    Fig. 19.  Breakdown traces after 120 pulses for different roughness: (a) Roughness Ra = 0.4; (b) roughness Ra = 0.05.

    图 20  提取腔的寿命现象 (a) 100个脉冲后; (b) 130个脉冲后. (通道1: 在线微波波形; 通道2, 3: 辐射场微波波形)

    Fig. 20.  Lifetime of extraction cavity: (a) After 100 pulses; (b) after 130 pulses. (channel 1, online microwave; channel 2 and 3, radiation field)

    图 21  矩形提取腔和椭圆形提取腔时的波形 (a)矩形提取腔; (b)椭圆形提取腔. (通道1: 二极管电压波形; 通道2: 二极管电流波形; 3: 辐射场波形)

    Fig. 21.  Waveform under rectangular and ellipse extraction cavity: (a) Rectangular extraction cavity; (b) ellipse extraction cavity. (channel 1, diode voltage; channel 2, diode current; channel 3, radiation field)

    图 22  40个微波脉冲后的击穿痕迹 (a)矩形提取腔; (b)椭圆形提取腔

    Fig. 22.  Breakdown trace after 40 pulses: (a) Rectangular extraction cavity; (b) ellipse extraction cavity.

    图 23  辐射场功率密度分布

    Fig. 23.  Power density distribution of radiation field.

    图 24  微波波形和频谱

    Fig. 24.  Microwave waveform and frequency spectrum.

    表 1  矩形提取腔各参数

    Table 1.  Parameters of rectangular extraction cavity.

    参数rrec/mmLrec/mmrrec1/mmrrec2/mmrc/mm
    取值31.007.002.252.0023.00
    下载: 导出CSV

    表 2  椭圆形提取腔各参数

    Table 2.  Parameters of ellipse extraction cavity.

    参数R0/mmZ0/mmrec/mmzec/mmr1/mmr2/mmLe/mmrc/mm
    取值8.502.2532.00243.000.754.006.7523.00
    下载: 导出CSV

    表 3  测量元件的衰减标定值

    Table 3.  Calibration result of measurement element.

    部件衰减值/dB
    衰减器26.256
    5 m微波缆5.165
    定向耦合器和波同转换器30.05
    下载: 导出CSV
  • [1]

    Nation 1970 J Appl. Phys. Lett. 17 491Google Scholar

    [2]

    Kovalev N F, Petelin M I, Raizer M D, Smorgonskii A V, Tsopp L E 1973 JETP Lett. 18 138

    [3]

    Bromborsky A, Still G W, Kehs R A, Clark C, Early L, Rohwein G, Poukey J 1989 J. Appl. Phys. 66 3871Google Scholar

    [4]

    Chen C H, Liu G Z, Huang W H, Song Z M, Fan J P, Wang H J 2002 IEEE Trans. Plasma Sci. 30 1108Google Scholar

    [5]

    Xiao R Z, Chen C H, Zhang X W, Sun J 2009 J. Appl. Phys. 105 053306Google Scholar

    [6]

    Xiao R Z, Zhang X W, Zhang L J, Li X Z, Zhang L G, Song W, Hu Y M, Sun J, Huo S F, Chen C H, Zhang Q Y, Liu G Z 2010 Laser Part. Beams 28 505Google Scholar

    [7]

    Tot’meninov E M, Vykhodtsev P V, Kitsanov S A, Klimov A I, Rostov V V 2011 Technical Physics 56 1009Google Scholar

    [8]

    Jin Z X, Zhang J, Yang J H, Zhong H H, Qian B L, Shu T, Zhang J D, Zhou S Y, Xu L R 2011 Rev. Sci. Instrum. 82 084704Google Scholar

    [9]

    Wu P, Fan J P, Teng Y, Shi Y C, Deng Y Q, S un 2014 J Phys. Plasmas 21 103110Google Scholar

    [10]

    Yang D W, Shi Y C, Xiao R Z, Teng Y, Sun J, Chen C H 2018 AIP Advances 8 095229Google Scholar

    [11]

    Korovin S D, Polevin S D, Roitman A M, Rostov V V 1996 Russian Physics Journal 39 1206Google Scholar

    [12]

    Yang D W, Chen C H, Xiao R Z, Shi Y C, Cao Y B, Teng Y, Sun J 2018 Phys. Plasmas 25 123101Google Scholar

    [13]

    Xiao R Z, Chen C H, Cao Y B, Sun J 2013 J. Appl. Phys. 114 213301Google Scholar

    [14]

    Rostov V V, Gunin A V, Tsygankov R V, Romanchenko I V, Yalandin M I 2018 IEEE Trans. Plasma Sci. 46 33Google Scholar

    [15]

    Rostov V V, Totmeninov E M, Tsygankov R V, Kurkan I K, Kovalchuk O B, Elchaninov A A, Stepchenko A S, Gunin A V, Konev V Y, Yushchenko A Y, Emelyanov E V 2018 IEEE Transactions on Electron Devices 65 3019Google Scholar

    [16]

    史彦超, 陈昌华, 肖仁珍, 滕雁, 邓昱群, 孙钧 2015 第十届全国高功率微波学术研讨会, 呼和浩特, 2015

    Shi Y C, Chen C H, Xiao R Z, Teng Y, Deng Y Q, Sun J 2015 The Tenth High Power Microwave Conference, Huhehot (in Chinese)

    [17]

    郭硕鸿 2008 电动力学 (第3版) (北京: 高等教育出版社)

    Guo S H 2008 Electrodynamics (3rd Ed.) (Beijing: Higher Education Press) (in Chinese)

    [18]

    Xiao R Z, Chen C H, Sun J, Zhang X W, Zhang L J 2011 Appl. Phys. Lett. 98 101502Google Scholar

    [19]

    Swegle J A, Poukey J W, Leifeste G T 1985 Physics of Fluids 28 2882Google Scholar

    [20]

    Cao Y B, Sun J, Zhang Y C, Song Z M, Wu P, Fan Z Q, Teng Y, He T, Chen C H 2018 IEEE Trans. Plasma Sci. 46 90

  • [1] 温亚飞, 庄园园, 王志强, 高士回. 高效率时间复用Duan-Lukin-Cirac-Zoller存储方案的实验研究. 物理学报, 2024, 73(18): 180301. doi: 10.7498/aps.73.20240799
    [2] 李雨晴, 王洪广, 翟永贵, 杨文晋, 王玥, 李韵, 李永东. 品质因数对TM02模相对论返波管工作模式影响. 物理学报, 2024, 73(3): 035202. doi: 10.7498/aps.73.20231577
    [3] 王洪广, 柳鹏飞, 张建威, 李永东, 曹亦兵, 孙钧. 收集极释气对相对论返波管影响的粒子模拟. 物理学报, 2019, 68(18): 185203. doi: 10.7498/aps.68.20190554
    [4] 温亚飞, 王圣智, 徐忠孝, 李淑静, 王海. 冷原子系综中两正交光场偏振模高效率存储的实验研究. 物理学报, 2018, 67(1): 014204. doi: 10.7498/aps.67.20171217
    [5] 郭靖, 何广源, 焦中兴, 王彪. 高效率内腔式2 μm简并光学参量振荡器. 物理学报, 2015, 64(8): 084207. doi: 10.7498/aps.64.084207
    [6] 陈再高, 王建国, 王玥, 朱湘琴, 张殿辉, 乔海亮. 相对论返波管超辐射产生与辐射的数值模拟研究. 物理学报, 2014, 63(3): 038402. doi: 10.7498/aps.63.038402
    [7] 陈再高, 王建国, 王玥, 乔海亮, 郭伟杰, 张殿辉. 基于粒子模拟和并行遗传算法的高功率微波源优化设计. 物理学报, 2013, 62(16): 168402. doi: 10.7498/aps.62.168402
    [8] 王辉辉, 蒙林, 刘大刚, 刘腊群, 杨超. 基于相对论返波管的全三维PIC/PSO数值优化研究. 物理学报, 2013, 62(13): 138401. doi: 10.7498/aps.62.138401
    [9] 王宇, 陈再高, 雷奕安. 等离子体填充0.14 THz相对论返波管模拟. 物理学报, 2013, 62(12): 125204. doi: 10.7498/aps.62.125204
    [10] 刘振帮, 金晓, 黄华, 陈怀璧, 王淦平. X波段同轴多注相对论速调管放大器的初步实验研究. 物理学报, 2012, 61(23): 238402. doi: 10.7498/aps.61.238402
    [11] 李伟, 刘永贵, 杨建华. 同轴辐射相对论磁控管的功率合成研究. 物理学报, 2012, 61(3): 038401. doi: 10.7498/aps.61.038401
    [12] 游海龙, 蓝建春, 范菊平, 贾新章, 查薇. 高功率微波作用下热载流子引起n型金属-氧化物-半导体场效应晶体管特性退化研究. 物理学报, 2012, 61(10): 108501. doi: 10.7498/aps.61.108501
    [13] 李伟, 刘永贵. 2工作模式下可调谐同轴辐射相对论磁控管的模拟研究. 物理学报, 2011, 60(12): 128403. doi: 10.7498/aps.60.128403
    [14] 黄华, 郭焱华, 金晓, 何琥, 雷禄容, 罗雄, 常安碧, 李正红. 相对论速调管放大器的相位特性研究. 物理学报, 2011, 60(3): 035201. doi: 10.7498/aps.60.035201
    [15] 马乔生, 金晓, 绪明, 李正红, 吴洋. X波段10 GW高功率返波管振荡器设计. 物理学报, 2011, 60(10): 105201. doi: 10.7498/aps.60.105201
    [16] 黄华, 罗雄, 雷禄容, 罗光耀, 张北镇, 金晓, 谭杰. 长脉冲相对论扩展互作用腔振荡器的初步研究. 物理学报, 2010, 59(3): 1907-1912. doi: 10.7498/aps.59.1907
    [17] 黄 华, 甘延青, 雷禄容, 金 晓, 鞠炳权, 向 飞, 冯弟超, 刘 忠. S波段相对论速调管振荡器研究. 物理学报, 2008, 57(3): 1765-1770. doi: 10.7498/aps.57.1765
    [18] 李小泽, 王建国, 童长江, 张 海. 充填不同气体相对论返波管特性的PIC-MCC模拟. 物理学报, 2008, 57(7): 4613-4622. doi: 10.7498/aps.57.4613
    [19] 黄华, 范植开, 谭杰, 马乔生, 甘延青, 常安碧. 长脉冲相对论速调管中束流脉冲缩短的研究. 物理学报, 2004, 53(4): 1129-1135. doi: 10.7498/aps.53.1129
    [20] 宫玉彬, 张 章, 魏彦玉, 孟凡宝, 范植开, 王文祥. 高功率微波器件中脉冲缩短现象的粒子模拟. 物理学报, 2004, 53(11): 3990-3995. doi: 10.7498/aps.53.3990
计量
  • 文章访问数:  7169
  • PDF下载量:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-22
  • 修回日期:  2020-04-22
  • 上网日期:  2020-05-18
  • 刊出日期:  2020-08-20

/

返回文章
返回