搜索

x
中国物理学会期刊

二维过渡金属硫化物二次谐波: 材料表征、信号调控及增强

CSTR: 32037.14.aps.69.20200452

Second harmonic generation of two-dimensional layered materials: characterization, signal modulation and enhancement

CSTR: 32037.14.aps.69.20200452
PDF
HTML
导出引用
  • 二维过渡金属硫化物(transition metal dichalcogenides, TMDCs)由于可实现从间接带隙到直接带隙半导体的转变, 能带宽度涵盖可见光到红外波段, 及二维限域所带来的优异光电特性, 在集成光子以及光电器件领域受到了广泛的关注. 最近随着二维材料基础非线性光学研究的深入, 二维TMDCs也展现出了在非线性光学器件应用上的巨大潜能. 本综述聚焦于二维层状TMDCs中关于二次谐波的研究工作. 首先简述一些基本的非线性光学定则, 然后讨论二维TMDCs中原子层数、偏振、激子共振、能谷等相关的二次谐波特性. 之后将回顾这些材料二次谐波信号的调制及增强工作, 讨论外加电场、应变、表面等离激元结构、纳米微腔等方法和手段的影响机理. 最后进行总结和对未来本领域工作的展望. 理解二维TMDCs二次谐波的产生机制及材料自身结构与外场调控机理, 将对未来超薄的二维非线性光学器件的发展产生深远的意义.

     

    Two-dimensionl (2D) layered transition metal dichalcogenides (TMDCs) have received great attention in integrated on-chip photonic and photoelectric applications due to their unique physical properties including indirect-to-direct optical bandgap transition, broad bandgap from visible band to near-infrared band, as well as their excellent optoelectric properties derived from the 2D confinement. Recently, with the in-depth study of their fundament nonlinear optical properties, these 2D layered TMDCs have displayed significant potential applications in nonlinear optical devices. In this review, we focus on recent research progress of second harmonic generation (SHG) studies of TMDCs. Firstly, we briefly introduce the basic theory of nonlinear optics (mainly about SHG). Secondly, the several intrinsic SHG relative properties in TMDCs including layer dependence, polarization dependence, exciton resonance effect, valley selection rule are discussed. Thirdly, the latest SHG modulation and enhancement studies are presented, where the electric field, strain, plasmonic structure and micro-cavity enhancement are covered. Finally, we will summarize and give a perspective of possible research direction in the future. We believe that a more in-depth understanding of the SHG process in 2D layered TMDCs as well as the material structure and modulation effects paves the way for further developing the ultra-thin, multifunctional 2D nonlinear optical devices.

     

    目录

    /

    返回文章
    返回