搜索

x
中国物理学会期刊

基于二维纳米材料可饱和吸收体的中红外超快光纤激光器

CSTR: 32037.14.aps.69.20200472

Two-dimensional material as a saturable absorber for mid-infrared ultrafast fiber laser

CSTR: 32037.14.aps.69.20200472
PDF
HTML
导出引用
  • 以石墨烯为代表的二维纳米材料可饱和吸收体以其独特的非线性光学特性被广泛应用于超快光纤激光器. 本文总结了近年来二维纳米材料作为可饱和吸收体在中红外超快光纤激光器中的研究发展, 介绍了二维纳米材料原子结构、非线性光学特性、可饱和吸收体器件集成方式, 及其在中红外超快光纤激光器中的应用, 重点阐述了基于黑磷可饱和吸收体实现的2 μm飞秒光纤激光器, 并对二维纳米材料可饱和吸收体在中红外超快光纤激光器中的发展与挑战进行了展望.

     

    The two-dimensional (2D) nanomaterial saturable absorber represented by graphene is widely used in ultrafast fiber lasers due to its unique nonlinear optical properties. In this paper, we summarize the research and development of 2D nanomaterials as saturable absorbers in mid-infrared ultrafast mode-locked fiber lasers in recent years, and introduce the atomic structure and nonlinear optical characteristics of 2D nanomaterials, and saturable absorber device integration methods. The laser performance parameters such as center wavelength, repetition frequency and average output power of the laser are discussed, and the femtosecond fiber laser based on black phosphorus saturable absorber in the middle infrared band is highlighted. Finally, the developments and challenges of 2D materials in mid-infrared pulsed fiber laser are also addressed.

     

    目录

    /

    返回文章
    返回