搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

镁颗粒-空气混合物一维非稳态爆震波特性数值模拟研究

刘龙 夏智勋 黄利亚 马立坤 陈斌斌

引用本文:
Citation:

镁颗粒-空气混合物一维非稳态爆震波特性数值模拟研究

刘龙, 夏智勋, 黄利亚, 马立坤, 陈斌斌

Numerical investigation of one-dimensional unsteady detonation wave characteristics of magnesium particle-air mixture

Liu Long, Xia Zhi-Xun, Huang Li-Ya, Ma Li-Kun, Chen Bin-Bin
PDF
HTML
导出引用
  • 镁颗粒因其能量密度高、点火特性和燃烧效率好的优势, 作为燃料或添加剂应用于爆震燃烧动力系统具有广阔的应用前景. 本文建立了镁颗粒-空气混合物的一维非稳态爆震波模型, 数值模拟爆震波传播过程及其内部流场分布. 研究结果表明, 爆震波传播过程中爆震波压力峰值和空间分布均存在小幅度波动. 考虑燃烧产物氧化镁在颗粒表面的沉积过程, 镁颗粒的反应速率和爆震波的稳定传播速度增大. 在考虑爆震管壁面损失的前提下, 随管径减小, 爆震波稳定速度和厚度均减小, 同时爆震波内未能反应的镁颗粒比例增大. 考虑壁面损失条件下, 爆震波稳定传播速度以及厚度均随颗粒初始粒径的增大而减小, 且镁颗粒初始为双粒径分布时对应的爆震波速度和厚度明显低于镁颗粒初始为统一单粒径的工况; 稳定传播速度随颗粒初始当量比的增大而先增后减, 厚度随初始当量比的增加单调递减. MgO熔化发生在CJ平面附近时, MgO熔化过程对爆震波传播稳定性无明显影响, 而爆震波厚度显著增大. 选取适当的点火区参数, 能够使爆震波达到稳定传播状态所经历的距离明显缩短.
    In this paper, a one-dimensional unsteady model is established for the detonation of magnesium particle-air mixture. Through numerical simulation, the influences of the loss caused by the side wall of the detonation tube, the diameter of the magnesium particles, the initial equivalent ratio of the magnesium particles, and the deposition process on the surface of the particles, and the ignition energy on the structure and development of the detonation wave and the distribution of the flow field parameters inside the detonation wave are obtained. The studies show that there appear oscillations during the propagation of the fully developed one-dimensional unsteady detonation wave of magnesium particle-air mixture, but the amplitude is less than 1 m/s. Considering the loss of the wall, the pressure and temperature inside the detonation wave decrease with the inner diameter of the detonation tube decreasing, thus leading the propagation velocity and the thickness of the detonation wave decreasing. In the case without the wall loss, as the initial particle size increases, the detonation wave velocity remains unchanged, and the detonation wave thickness monotonically increases. With the wall loss taken into consideration, the stable velocity and thickness of detonation wave are lower than without considering the wall loss under the same initial conditions. Both the difference between the velocities and the difference between thickness values under the conditions with and without considering the wall loss increase as initial particle size increases. The detonation wave thickness with a double-size-distribution initial particle size is more than that with an equivalent single-size-distribution. Meanwhile the stable propagation velocity of the former is less than that of the latter. In the range of initial particle equivalent ratio of 0.5–2, as the initial equivalent ratio increases, the stable velocity of ideal detonation wave first increases and then decreases, and the thickness of the detonation wave first decreases and then increases. Considering the loss of the wall, with the increase of the initial equivalence ratio, the stable velocity of detonation wave first decreases and then increases and the thickness of the detonation wave monotonically decreases. When the initial equivalence ratio of the initial particles is in a lower range (0.337–0.382), the melting of MgO occurs near the CJ plane. As a result, the melting process of MgO has no significant effect on the stability of the detonation wave propagation, but has a greater influence on the structure of the detonation wave: when the initial equivalence ratio is lower in the above range, MgO in the detonation wave is partially melted and then re-solidified. When the initial equivalence ratio is higher in the above range, the MgO at the CJ plane is still in the melting process, and there is a low-strength secondary compression process in the detonation wave. Considering the fact that the combustion products are deposited on the particle surface, the detonation wave velocity increases while the corresponding thickness of the detonation wave remains almost unchanged with the increase of the deposition rate. The parameters of the ignition region have no influence on the final stable propagation state of the detonation wave, but will affect the development process of the detonation wave. Selecting appropriate paraneters of ignition zone can shorten the distance of denotation wave reaching to the steady propagation.
      通信作者: 夏智勋, zxxia@nudt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51706241, 11572349)资助的课题
      Corresponding author: Xia Zhi-Xun, zxxia@nudt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grants Nos. 51706241, 11572349)
    [1]

    Veyssiere B, Ingignoli W 2003 Shock Waves 12 291Google Scholar

    [2]

    Palaszewski B, Jurns J, Breisacher K, Kearns K 2004 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Fort Lauderdale, USA, July 11–14, 2004 p4191

    [3]

    Bykovskii F A, Zhdan S A, Vedernikov E F, Zholobov, Yu A 2010 Dokl. Phys. 55 142Google Scholar

    [4]

    Bykovskii F A, Zhdan S A, Vedernikov E F, Zholobov Yu A 2011 Combust. Explo. Shock. 47 473Google Scholar

    [5]

    Bykovskii F A, Zhdan S A, Vedernikov E F, Zholobov Yu A 2012 Combust. Explo. Shock. 48 203Google Scholar

    [6]

    Bykovskii F A, Zhdan S A, Vedernikov E F, Zholobov Yu A 2013 Combust. Explo. Shock. 49 705Google Scholar

    [7]

    Bykovskii F A, Zhdan S A, Vedernikov E F 2014 Combust. Explo. Shock. 50 214Google Scholar

    [8]

    刘龙, 夏智勋, 黄利亚, 马立坤, 那旭东 2019 物理学报 68 244701Google Scholar

    Liu L, Xia Z X, Huang L Y, Ma L K, Na X D 2019 Acta Phys. Sin. 68 244701Google Scholar

    [9]

    Gosteev Y A, Fedorov A V 2005 Combust. Expl. Shock Waves 41 190Google Scholar

    [10]

    Zhang F. 2009 Shock Wave Science and Technology Reference Library (Vol.4) (Berlin, Heidelberg: Springer) pp99, 153, 159

    [11]

    Cassel H M, Liebman I 1962 Combust. Flame. 6 153Google Scholar

    [12]

    洪滔, 秦承森 1999 爆炸与冲击 19 335Google Scholar

    Hong T, Qing C S 1999 Expl. Shock Wave 19 335Google Scholar

    [13]

    Derevyaga M E, Stesik L N, Fedorin E A 1978 Combust. Explo. Shock. 5 3

    [14]

    冯运超 2014 硕士学位论文(长沙: 国防科学技术大学)

    Feng Y C 2014 Master Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [15]

    Pilling N B, Bedworth R E 1923 Journal Inst. Met 29 529

    [16]

    Ezhovskii G K, Ozerov E S 1977 Combust. Explo. Shock. 13 716Google Scholar

    [17]

    Ezhovskii G K, Ozerov E S, Roshchenya Y V 1979 Combust. Explo. Shock. 15 194Google Scholar

    [18]

    Bloshenko V N, Merzhanov A G, Khaikin B I 1976 Combust. Explo. Shock. 12 612Google Scholar

    [19]

    Valov A E, Gusachenko E I, Shevtsov V I 1991 Combust. Explo. Shock. 27 393Google Scholar

    [20]

    洪滔, 秦承森 2004 爆炸与冲击 24 193Google Scholar

    Hong T, Qing C S 2004 Expl. Shock Wave 24 193Google Scholar

    [21]

    Lee  J  H  S  1998  The Detonation Phenomenon (New York:Cambridge University Press) p108

    [22]

    Steinberg T A, Wilson D, Benz F 1992 Combust. Flame 91 200Google Scholar

    [23]

    杨晋朝 2013 博士学位论文(长沙: 国防科学技术大学)

    Yang J C 2013 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [24]

    杨涛, 方丁酉, 唐乾刚 2008 火箭发动机燃烧原理 (长沙: 国防科技大学出版社)

    Yang T, Fang D J, Tang Q G 2008 Combustion Principle of Rocket Engine (Changsha: National Defense Science and Technology University Press) (in Chinese)

    [25]

    Abbud-Madrid A, Modak A, Branch M C 2001 J. Propul. Power 17 852Google Scholar

    [26]

    Fox T W, Rackett C W, Nicholls J A 1978 Proceedings of the 11th International Symposium on Shock Waves and Tubes, Seattle, USA, July 11–14, 1978 p262

    [27]

    韦伟, 翁春生 2017 固体火箭技术 40 41

    Wei W, Wen C S 2017 J. Solid Rock. Technol. 40 41

    [28]

    潘啸, 翁春生 2017 南京理工大学学报(自然科学版) 41 1

    Pan X, Weng C H 2017 J. Nanjing Univ. Sci. Technol. 41 1

    [29]

    杨晋朝, 夏智勋, 胡建新 2013 物理学报 62 074701Google Scholar

    Yang J C, Xia Z X, Hu J X 2013 Acta Phys. Sin. 62 074701Google Scholar

    [30]

    Fedorov A V, Khmel’ T A 1999 Combust. Expl. Shock Waves 9 313

    [31]

    Zhang F, Grönig H, Van de Ven A 2001 Shock Waves 11 53Google Scholar

    [32]

    Li Y, Alexander C G, Wolanski P, Kauffman C W, Sichel M 1993 13 th International Colloquium on Dynamics of Explosions and Reactive Systems Nagoya, Japan, July 28–August 2, 1991 p170

    [33]

    Tulis A J, Selman J R 1982 19th Symposium (International) on Combustion, The Combustion Institute, Haifa, Israel, August 8–13 1982 p655

    [34]

    刘庆明, 范宝春, 陈志华, 李鸿志 1997 实验力学 12 376

    Liu Q M, Fan B C, Chen Z H, Li H Z 1997 J. Exp. Mech. 12 376

  • 图 1  不同网格尺度对应的压力分布

    Fig. 1.  Spatial distribution of the gas-phase pressure with different grid sizes.

    图 2  不同时刻爆震波压力峰附近的压力分布

    Fig. 2.  Pressure distribution near peak at different time.

    图 3  不同燃烧模型对应的爆震波内流场参数分布 (a) 密度和浓度; (b) 速度; (c) 温度; (d) 压力

    Fig. 3.  Parameters distribution in detonation wave with different combustion models: (a) Density and concentration; (b) velocity; (c) temperature; (d) pressure.

    图 4  ${f_{\rm{S}} } = 1.1$时对应的稳定传播状态爆震波两相温度分布

    Fig. 4.  Temperature distribution of gas and particle phases inside steady detonation wave with ${f_{\rm{S}} } = 1.1$.

    图 5  爆震波参数随${f_{\rm{S}} }$的变化 (a) 爆震波厚度; (b) CJ面两相温度; (c) CJ面颗粒相浓度; (d) 爆震波速度

    Fig. 5.  Variation of detonation parameters with different value of ${f_{\rm{S}} }$: (a) Thickness; (b) temperature at CJ plane; (c) particle concentration at CJ plane; (d) velocity

    图 6  不同管径条件下爆震波内的压力和气相温度分布 (a) 压力; (b) 气相温度

    Fig. 6.  Pressure and gas-phase temperature distribution inside detonation wave with different tube inner-diameters: (a) Pressure; (b) gas-phase temperature.

    图 7  稳定传播的爆震波速度和爆震波厚度随初始当量比的变化 (a) 速度; (b) 厚度

    Fig. 7.  Variation of steady velocity and thickness of detonation wave with different initial equivalent ratio: (a) Velocity; (b) thickness.

    图 8  不同当量比条件下爆震波内气相密度分布

    Fig. 8.  Gas-phase density distribution inside detonation wave with different initial equivalent ratio.

    图 9  不同初始当量比条件下爆震波内参数分布 (a)压力; (b)温度

    Fig. 9.  Parameters distribution inside detonation wave with different initial equivalent ratio: (a) Pressure; (b) temperature.

    图 10  不同初始当量比条件下不同位置处的爆震波压力峰值

    Fig. 10.  Pressure peak at different position with different initial equivalent ratio.

    图 11  不同点火区长度对应的爆震波速度发展过程

    Fig. 11.  Development of detonation wave velocity with different length of ignition zone.

    图 12  不同点火区参数对应的爆震波速度发展过程

    Fig. 12.  Development of detonation wave velocity with different field parameters of ignition zone.

    表 1  不同模型对应的爆震波稳定速度和厚度

    Table 1.  Steady velocity and thickness of detonation wave with different models.

    参数本文模型文献[29]模型两相ZND模型
    爆震波速度/(m·s–1)178617891782.28
    爆震波厚度/m0.3270.0550.331
    下载: 导出CSV

    表 2  不同爆震管内径条件下爆震波稳定传播速度、厚度和rCJ/r0

    Table 2.  Steady velocity, thickness and rCJ/r0 at CJ plane of detonation wave with different tube inner-diameters.

    管径$\infty $1 m0.3 m0.15 m0.075 m
    稳定速度/(m·s–1)17861777.51758.517331691.5
    爆震波厚度/m0.3270.2970.2540.2340.2185
    CJ面rCJ/r0 < 0.10.1620.1990.2390.277
    注: 管径$\infty $表示不考虑管壁损失的理想条件
    下载: 导出CSV

    表 3  不同颗粒初始粒径对应的爆震波传播速度和厚度

    Table 3.  Steady velocity and thickness of detonation wave with different initial particle diameter.

    粒径5 μm10 μma10 μmb15 μm20 μm
    爆震波速度/(m·s–1)无损失17861786178617861786
    有损失17621733170017021662
    爆震波厚度/m无损失0.1710.3270.6220.6140.908
    有损失0.0990.2340.4460.4250.666
    注: a, 单一粒径; b, 5 μm和15 μm掺混后的平均粒径.
    下载: 导出CSV
  • [1]

    Veyssiere B, Ingignoli W 2003 Shock Waves 12 291Google Scholar

    [2]

    Palaszewski B, Jurns J, Breisacher K, Kearns K 2004 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Fort Lauderdale, USA, July 11–14, 2004 p4191

    [3]

    Bykovskii F A, Zhdan S A, Vedernikov E F, Zholobov, Yu A 2010 Dokl. Phys. 55 142Google Scholar

    [4]

    Bykovskii F A, Zhdan S A, Vedernikov E F, Zholobov Yu A 2011 Combust. Explo. Shock. 47 473Google Scholar

    [5]

    Bykovskii F A, Zhdan S A, Vedernikov E F, Zholobov Yu A 2012 Combust. Explo. Shock. 48 203Google Scholar

    [6]

    Bykovskii F A, Zhdan S A, Vedernikov E F, Zholobov Yu A 2013 Combust. Explo. Shock. 49 705Google Scholar

    [7]

    Bykovskii F A, Zhdan S A, Vedernikov E F 2014 Combust. Explo. Shock. 50 214Google Scholar

    [8]

    刘龙, 夏智勋, 黄利亚, 马立坤, 那旭东 2019 物理学报 68 244701Google Scholar

    Liu L, Xia Z X, Huang L Y, Ma L K, Na X D 2019 Acta Phys. Sin. 68 244701Google Scholar

    [9]

    Gosteev Y A, Fedorov A V 2005 Combust. Expl. Shock Waves 41 190Google Scholar

    [10]

    Zhang F. 2009 Shock Wave Science and Technology Reference Library (Vol.4) (Berlin, Heidelberg: Springer) pp99, 153, 159

    [11]

    Cassel H M, Liebman I 1962 Combust. Flame. 6 153Google Scholar

    [12]

    洪滔, 秦承森 1999 爆炸与冲击 19 335Google Scholar

    Hong T, Qing C S 1999 Expl. Shock Wave 19 335Google Scholar

    [13]

    Derevyaga M E, Stesik L N, Fedorin E A 1978 Combust. Explo. Shock. 5 3

    [14]

    冯运超 2014 硕士学位论文(长沙: 国防科学技术大学)

    Feng Y C 2014 Master Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [15]

    Pilling N B, Bedworth R E 1923 Journal Inst. Met 29 529

    [16]

    Ezhovskii G K, Ozerov E S 1977 Combust. Explo. Shock. 13 716Google Scholar

    [17]

    Ezhovskii G K, Ozerov E S, Roshchenya Y V 1979 Combust. Explo. Shock. 15 194Google Scholar

    [18]

    Bloshenko V N, Merzhanov A G, Khaikin B I 1976 Combust. Explo. Shock. 12 612Google Scholar

    [19]

    Valov A E, Gusachenko E I, Shevtsov V I 1991 Combust. Explo. Shock. 27 393Google Scholar

    [20]

    洪滔, 秦承森 2004 爆炸与冲击 24 193Google Scholar

    Hong T, Qing C S 2004 Expl. Shock Wave 24 193Google Scholar

    [21]

    Lee  J  H  S  1998  The Detonation Phenomenon (New York:Cambridge University Press) p108

    [22]

    Steinberg T A, Wilson D, Benz F 1992 Combust. Flame 91 200Google Scholar

    [23]

    杨晋朝 2013 博士学位论文(长沙: 国防科学技术大学)

    Yang J C 2013 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [24]

    杨涛, 方丁酉, 唐乾刚 2008 火箭发动机燃烧原理 (长沙: 国防科技大学出版社)

    Yang T, Fang D J, Tang Q G 2008 Combustion Principle of Rocket Engine (Changsha: National Defense Science and Technology University Press) (in Chinese)

    [25]

    Abbud-Madrid A, Modak A, Branch M C 2001 J. Propul. Power 17 852Google Scholar

    [26]

    Fox T W, Rackett C W, Nicholls J A 1978 Proceedings of the 11th International Symposium on Shock Waves and Tubes, Seattle, USA, July 11–14, 1978 p262

    [27]

    韦伟, 翁春生 2017 固体火箭技术 40 41

    Wei W, Wen C S 2017 J. Solid Rock. Technol. 40 41

    [28]

    潘啸, 翁春生 2017 南京理工大学学报(自然科学版) 41 1

    Pan X, Weng C H 2017 J. Nanjing Univ. Sci. Technol. 41 1

    [29]

    杨晋朝, 夏智勋, 胡建新 2013 物理学报 62 074701Google Scholar

    Yang J C, Xia Z X, Hu J X 2013 Acta Phys. Sin. 62 074701Google Scholar

    [30]

    Fedorov A V, Khmel’ T A 1999 Combust. Expl. Shock Waves 9 313

    [31]

    Zhang F, Grönig H, Van de Ven A 2001 Shock Waves 11 53Google Scholar

    [32]

    Li Y, Alexander C G, Wolanski P, Kauffman C W, Sichel M 1993 13 th International Colloquium on Dynamics of Explosions and Reactive Systems Nagoya, Japan, July 28–August 2, 1991 p170

    [33]

    Tulis A J, Selman J R 1982 19th Symposium (International) on Combustion, The Combustion Institute, Haifa, Israel, August 8–13 1982 p655

    [34]

    刘庆明, 范宝春, 陈志华, 李鸿志 1997 实验力学 12 376

    Liu Q M, Fan B C, Chen Z H, Li H Z 1997 J. Exp. Mech. 12 376

  • [1] 刘龙, 夏智勋, 黄利亚, 马立坤, 那旭东. 镁颗粒-空气混合物一维稳态爆震波特性数值模拟. 物理学报, 2019, 68(24): 244701. doi: 10.7498/aps.68.20190974
    [2] 朱学涛, 郭建东. 新型高分辨率电子能量损失谱仪与表面元激发研究. 物理学报, 2018, 67(12): 127901. doi: 10.7498/aps.67.20180689
    [3] 钱文伟, 李伟锋, 施浙杭, 刘海峰, 王辅臣. 稠密颗粒射流撞击壁面颗粒膜表面波纹特征. 物理学报, 2016, 65(21): 214501. doi: 10.7498/aps.65.214501
    [4] 白玲, 李大鸣, 李彦卿, 王志超, 李杨杨. 基于范德瓦尔斯表面张力模式液滴撞击疏水壁面过程的研究. 物理学报, 2015, 64(11): 114701. doi: 10.7498/aps.64.114701
    [5] 杨辰, 房超, 张建, 曹建主. 球床高温气冷堆燃料颗粒中放射性核素的累积释放份额研究. 物理学报, 2014, 63(3): 032802. doi: 10.7498/aps.63.032802
    [6] 余波, 陈伯伦, 侯立飞, 苏明, 黄天晅, 刘慎业. 化学气相沉积金刚石探测器测量辐射驱动内爆的硬X射线. 物理学报, 2013, 62(5): 058102. doi: 10.7498/aps.62.058102
    [7] 杨晋朝, 夏智勋, 胡建新. 镁颗粒群着火和燃烧过程数值模拟. 物理学报, 2013, 62(7): 074701. doi: 10.7498/aps.62.074701
    [8] 房超, 刘马林. 包覆燃料颗粒碳化硅层的Raman光谱研究. 物理学报, 2012, 61(9): 097802. doi: 10.7498/aps.61.097802
    [9] 杨晋朝, 夏智勋, 胡建新. 镁颗粒群非稳态着火过程数值模拟. 物理学报, 2012, 61(16): 164702. doi: 10.7498/aps.61.164702
    [10] 杨义涛, 张崇宏, 周丽宏, 李炳生, 张丽卿. 惰性气体离子注入铝镁尖晶石合成金属纳米颗粒的探索. 物理学报, 2009, 58(1): 399-403. doi: 10.7498/aps.58.399
    [11] 崔影超, 谢自力, 赵红, 梅琴, 李弋, 刘斌, 宋黎红, 张荣, 郑有炓. 利用金属有机物化学气相沉积技术生长的a面GaN表面形貌和位错的研究. 物理学报, 2009, 58(12): 8506-8510. doi: 10.7498/aps.58.8506
    [12] 曹柱荣, 江少恩, 陈家斌, 缪文勇, 周维民, 陈 铭, 谷渝秋, 丁永坤. 神光Ⅱ装置间接驱动DD燃料面密度诊断. 物理学报, 2007, 56(9): 5330-5334. doi: 10.7498/aps.56.5330
    [13] 谢 耩, 温建忠, 汪国平, 王建波. 聚合物表面银纳米颗粒的大面积均匀沉积及其应用. 物理学报, 2005, 54(1): 242-245. doi: 10.7498/aps.54.242
    [14] 陈敏, 魏合林, 刘祖黎, 姚凯伦. 沉积粒子能量对薄膜早期生长过程的影响. 物理学报, 2001, 50(12): 2446-2451. doi: 10.7498/aps.50.2446
    [15] 廖梅勇, 秦复光, 柴春林, 刘志凯, 杨少延, 姚振钰, 王占国. 离子能量和沉积温度对离子束沉积碳膜表面形貌的影响. 物理学报, 2001, 50(7): 1324-1328. doi: 10.7498/aps.50.1324
    [16] 杨洪琼, 杨建伦, 温树槐, 王根兴, 郭玉芝, 唐正元, 牟维兵, 马驰. 激光直接驱动内爆DT燃料面密度诊断. 物理学报, 2001, 50(12): 2408-2412. doi: 10.7498/aps.50.2408
    [17] 宋远红, 王友年, 宫 野. 氢离子在固体表面掠角散射与能量损失的数值模拟. 物理学报, 1999, 48(7): 1275-1281. doi: 10.7498/aps.48.1275
    [18] 王文鼐, 臧文成, 顾刚, 都有为, 洪建明. 镍超微颗粒的表面磁性. 物理学报, 1992, 41(9): 1537-1541. doi: 10.7498/aps.41.1537
    [19] 朱立, 鲍世宁, 徐亚伯, 王浭. CO和K在Fe(110)面共吸附的高分辨电子能量损失谱研究. 物理学报, 1990, 39(10): 1691-1696. doi: 10.7498/aps.39.1691
    [20] 费璐, 郑宇, 张强基, 黄金林, 华中一. 多晶硼和含硼金属玻璃的表面广延能量损失精细结构研究. 物理学报, 1987, 36(9): 1213-1218. doi: 10.7498/aps.36.1213
计量
  • 文章访问数:  5336
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-14
  • 修回日期:  2020-05-09
  • 上网日期:  2020-06-17
  • 刊出日期:  2020-10-05

/

返回文章
返回