搜索

x
中国物理学会期刊

一种具有减反射性能的Cu2ZnSnS4太阳能电池透明导电氧化物薄膜

CSTR: 32037.14.aps.69.20200897

Transparent conductive oxide film with antireflective properties for Cu2ZnSnS4 solar cells

CSTR: 32037.14.aps.69.20200897
PDF
HTML
导出引用
  • 通过研究一种新型透明导电氧化物薄膜(transparent conductive oxide, TCO)的减反射作用, 探索增加入射光进入Cu2ZnSnS4 (CZTS)太阳能电池从而提高太阳能电池效率的新途径. 在AM1.5光照条件下, 设计了一种在宽波长范围内具有更好的减反射性能的TCO薄膜, 即SiO2/ZnO减反射TCO薄膜(antireflective transparent conductive oxide, ATCO). 为了衡量300—800 nm波长范围内的减反射效果, 引入了有效平均反射率方法(effective average reflectance, EAR)进行测算. 为充分考虑折射率色散的影响以及TCO, ATCO薄膜与有源层的耦合, 本文采用多维光学传输矩阵对各关键材料层的耦合及膜厚进行了优化, 以准确衡量最优的减反射效果. 最后, 通过比较常规CZTSSC和ATCO-CZTSSC的减反射性能, 得到了新型ATCO膜, 可以有效地减少光损耗并提高光电转换效率的结论.

     

    At present, there are several kinds of broadband antireflection coatings (ARCs). For the flat multilayer ARC, it usually contains double, triple, or up to 4 layers. It has been demonstrated that the performance of a single layer coating is not good enough across the desired spectral range. Multiple layer ARCs have much better performance for broadband solar cells (SCs). When inspecting the antireflection structure of Cu2ZnSnS4 solar cells (CZTSSCs), it is shown that the transparent conductive oxide (TCO) of traditional CZTSSCs does not have an satisfactory antireflective performance. This paper aims to investigate a way to increase the incident light transmitted into CZTSSCs, and thus improving the efficiency of solar cells by studying the use of the antireflective effect of a TCO film. It introduces a new type of TCO film with better antireflective properties across a wide wavelength range. An SiO2/ZnO antireflective TCO (ATCO) is designed under AM1.5 illumination. In order to measure the antireflective effect over the 300–800 nm wavelength range, an effective average reflectance method (EAR) is introduced. Considering the effect of the refractive index dispersion and the coupling of the TCO or ATCO films with the active layer, in this paper we use a multi-dimensional transfer matrix to optimize the thickness of each key layer to accurately confirm the best antireflective effect. In addition, the optimized TCO film and the optimized ATCO film in CZTSSCs are compared and analyzed by means of EAR. The result shows, through the comparison of the antireflection between conventional TCO CZTSSCs and ATCO CZTSSCs, that there are considerable differences in final optimal reflectivity between TCO layer and ATCO film. For the conventional CZTSSC, the optimal effective average reflectance of TCO layer is 5.6%, and the lowest reflectivity in the waveband from 400 nm to 500 nm is 6.9%. In addition, the corresponding values obtained in the new ATCO CZTSSC are 3.8% and 1.6% respectively. These apparent changes in reflectivity are appealing in that the new ATCO films can effectively reduce light loss and improve the efficiency of photovoltaic conversion.

     

    目录

    /

    返回文章
    返回