搜索

x
中国物理学会期刊

基于多路放大器加法电路噪声抑制的热声成像技术

CSTR: 32037.14.aps.69.20201036

Thermoacoustic imaging based on noise suppression of multi-channel amplifier and additive circuit

CSTR: 32037.14.aps.69.20201036
PDF
HTML
导出引用
  • 热声成像信噪比往往较低, 为提高信噪比, 通常需要通过对热声信号进行多次取平均. 然而, 通过取平均提高信噪比的方式会降低热声成像时间分辨率, 阻碍快速热声成像技术的发展. 本文提出一种基于多路放大器加法电路的低成本快速热声成像技术, 将超声换能器接收到的热声信号分成四路同时进入四个放大器, 放大后再将该四路信号经过加法电路累加输入到采集系统中, 实现硬件层面的取平均去噪. 仿体实验结果表明: 通过基于多路放大器加法电路的低成本快速热声成像技术, 成像时间分辨率提高了5倍, 信噪比由~6 dB提升到了~12 dB. 本文通过低成本的简单加法电路原理, 既提高了热声成像技术时间分辨率, 又提升了成像信噪比, 为快速热声成像技术的发展提供了一种崭新的技术, 有助于推动热声成像技术的发展和临床应用.

     

    Thermoacoustic imaging (TAI) is an emerging biomedical imaging method in which microwave is used as an excitation source to generate acoustic signals. The TAI possesses the advantages of high contrast of microwave imaging and high resolution of ultrasound imaging, which is also noninvasive. While the signal-to-noise ratio (SNR) of TAI is often very low. It is usually required by averaging the thermoacoustic signal many times to improve the SNR. However, averaging the signal to improve the SNR can significantly reduce the TAI’s time resolution, which hinders the development of rapid TAI. Here in this paper, we propose to reduce the cost and improve the time resolution of TAI based on multi-channel amplifier and additive circuit. The received thermoacoustic signals are divided into 4 channels and then entered into 4 amplifiers simultaneously.
    After being amplified, the signals are added and collected by the data acquisition system for reconstructing the image. The phantom results indicate that the time resolution of TAI increases 5 times and the SNR rises from 6 dB to 12 dB, with the multi-channel amplifier and additive circuit adopted. The method proposed in this paper is helpful in promoting the development and clinical application of TAI, especially it has a great significance for developing the ultra-fast TAI.

     

    目录

    /

    返回文章
    返回