搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

预测人类移动行为的介入机会类模型研究进展

刘二见 闫小勇

引用本文:
Citation:

预测人类移动行为的介入机会类模型研究进展

刘二见, 闫小勇

Research advances in intervening opportunity class models for predicting human mobility

Liu Er-Jian, Yan Xiao-Yong
PDF
HTML
导出引用
  • 预测地点间人类的移动在人类迁徙、交通预测、疾病传播、商品贸易、社会交往等诸多方面具有重要的意义. 介入机会模型是最早从个体目的地选择行为角度建立的预测人类移动的模型, 它将起终点之间的介入机会作为影响人类移动的关键因素, 启发研究者提出了许多新的介入机会类模型. 介入机会类模型在很多学科领域也获得了广泛的应用. 本文首先对包括介入机会模型、辐射类模型、人口权重机会类模型、探索类介入机会模型和统一机会模型等在内的介入机会类模型的研究进展进行综述, 然后对这些介入机会类模型在空间交互和疾病传播方面的应用进行介绍, 最后对该类模型未来的研究方向进行探讨.
    Predicting human mobility between locations is of great significance for investigating the population migration, traffic forecasting, epidemic spreading, commodity trade, social interaction and other relevant areas. The intervening opportunity (IO) model is the model established earliest from the perspective of individual choice behavior to predict human mobility. The IO model takes the total number of opportunities between the origin location and the destination as a key factor in determining human mobility, which has inspired researchers to propose many new IO class models. In this paper, we first review the research advances in the IO class models, including the IO model, radiation class models, population-weighted opportunity class models, exploratory IO class models and universal opportunity model. Among them, although the IO model has an important theoretical value, it contains parameters and has low prediction accuracy, so it is rarely used in practice. The radiation class models are built on the basis of the IO model on the assumption that the individual will choose the closest destination whose benefit is higher than the best one available in origin location. The radiation class models can better predict the commuting behavior between locations. The population-weighted opportunity class models are established on the assumption that when seeking a destination, the individual will not only consider the nearest locations with relatively large benefits, but also consider all locations in the range of alternative space. The population-weighted opportunity class models can better predict intracity trips and intercity travels. The exploratory IO class models are built on condition that the destination selected by the individual presents a higher benefit than the benefit of the origin and the benefits of the intervening opportunities. The exploratory IO class models can better predict the social interaction between individuals, intracity trips and intercity travels. The universal opportunity model is developed on the assumption that when an individual selects a destination, she/he will comprehensively compare the benefits between the origin and the destination and their intervening opportunity. The universal opportunity model presents a new universal framework for IO class models and can accurately predict the movements on different spatiotemporal scales. The IO class models have also been widely used in many fields, including predicting trip distribution in transportation science, modeling the purchasing behaviors of consumers in economics, detecting complex network communities in network science, measuring spatial interaction in economic geography and predicting infectious disease transmission in epidemiology. This paper focuses on the applications of IO class models in spatial interaction and epidemic spreading, and finally presents the discussion on the possible future research directions of these models.
      通信作者: 闫小勇, yanxy@bjtu.edu.cn
    • 基金项目: 中央高校基本科研业务费专项资金 (批准号: 2019YJS092)和国家自然科学基金 (批准号: 71822102, 71671015, 61304177) 资助的课题
      Corresponding author: Yan Xiao-Yong, yanxy@bjtu.edu.cn
    • Funds: Project supported by the Fundamental Research Fund for the Central Universities, China (Grant No. 2019YJS092) and the National Natural Science Foundation of China (Grant Nos. 71822102, 71671015, 61304177)
    [1]

    闫小勇 2019 超越引力定律 (北京: 科学出版社) 第1−3页

    Yan X Y 2019 Beyond Gravity Law (Beijing: China Science Press) pp1−3 (in Chinese)

    [2]

    Desart H G 1846 Chemin de fer Direct de Bruxelles vers Gand, par Alost, en Communication avec les Stations Diverses (Bruxelles: Devroye) p16

    [3]

    Huang Z R, Wang P, Zhang F, Gao J X, Schich M 2018 Transport. Res. Part B 114 147Google Scholar

    [4]

    Xia C Y, Wang Z H, Zheng C Y, Guo Q T, Shi Y T, Dehmer M, Chen Z Q 2019 Inf. Sci. 471 185Google Scholar

    [5]

    Jia J S, Lu X, Yuan Y, Xu G, Jia J M, Christakis N A 2020 Nature 582 389Google Scholar

    [6]

    Giles J R, Erbach-Schoenberg E Z, Tatem A J, et al. 2020 Proc. Natl. Acad. Sci. U.S.A. 117 22572Google Scholar

    [7]

    周涛, 韩筱璞, 闫小勇, 杨紫陌, 赵志丹, 汪秉宏 2013 电子科技大学学报 42 481Google Scholar

    Zhou T, Han X P, Yan X Y, Yang Z M, Zhao Z D, Wang B H 2013 J. Uiv. Electron. Sci. Technol. China 42 481Google Scholar

    [8]

    闫小勇 2020 物理学报 69 088903

    Yan X Y 2020 Acta Phys. Sin. 69 088903

    [9]

    Stouffer S A 1940 Am. Sociol. Rev. 5 845Google Scholar

    [10]

    Newton I 1729 Mathematical Principles of Natural Philosophy (London: Benjamin Motte Publisher) p5

    [11]

    Wilson A G 1967 Transp. Res. 1 253Google Scholar

    [12]

    Pressé S, Ghosh K, Lee J, Dill K A 2013 Rev. Mod. Phys. 85 1115Google Scholar

    [13]

    Barbosa H, Barthélemy M, Ghoshal G, et al. 2018 Phys. Rep. 734 1Google Scholar

    [14]

    Simini F, González M C, Maritan A, Barabási A L 2012 Nature 484 96Google Scholar

    [15]

    Ren Y H, Ercsey-Ravasz M, Wang P, González M C, Toroczkai Z 2014 Nat. Commun. 5 5347Google Scholar

    [16]

    Simini F, Maritan A, Néda Z 2013 PLoS One 8 e60069Google Scholar

    [17]

    Varga L, Tóth G, Néda Z 2016 Regional Statistics 6 27Google Scholar

    [18]

    Varga L, Tóth G, Néda Z 2018 EPJ Data Sci. 7 37Google Scholar

    [19]

    Yan X Y, Zhao C, Fan Y, Di Z R, Wang W X 2014 J. R. Soc. Interface 11 20140834Google Scholar

    [20]

    Yan X Y, Wang W X, Gao Z Y, Lai Y C 2017 Nat. Commun. 8 1639Google Scholar

    [21]

    Sim A, Yaliraki S N, Barahona M, Stumpf M P 2015 J. R. Soc. Interface 12 20150315Google Scholar

    [22]

    Liu E J, Yan X Y 2019 Physica A 526 121023Google Scholar

    [23]

    Liu E J, Yan X Y 2020 Sci. Rep. 10 4657Google Scholar

    [24]

    闫小勇 2017 科技导报 35 15Google Scholar

    Yan X Y 2017 Sci. Technol. Rev. 35 15Google Scholar

    [25]

    Kang C G, Liu Y, Guo D S, Qin K 2015 PLoS One 10 e0143500Google Scholar

    [26]

    Yang Y X, Herrera C, Eagle N, Gonzélez M C 2014 Sci. Rep. 4 5662Google Scholar

    [27]

    闫小勇 2014 博士学位论文 (北京: 北京师范大学) 第39−43页

    Yan X Y 2014 Ph. D. Dissertation (Beijing: Beijing Normal University) pp39−43 (in Chinese)

    [28]

    Zhao Y M, Zeng A, Yan X Y, Wang W X, Lai Y C 2016 New J. Phys. 18 053025Google Scholar

    [29]

    Hu B Y, Ma Y L, Pei Y L, Gao W 2020 Transportmetrica A 16 1062Google Scholar

    [30]

    Forghani M, Karimipour F 2018 Trans. GIS 22 1008Google Scholar

    [31]

    Bassolas A, Barbosa-Filho H, Dickinson B, et al. 2019 Nat. Commun. 10 1Google Scholar

    [32]

    Zhao Y B, Wu G Z, Gong Y X, Yang M Z, Ni H G 2019 Sci. Total Environ. 679 378Google Scholar

    [33]

    Cazabet R, Borgnat P, Jensen P 2017 Proceedings of the 8th International Conference on Complex Networks Dubrovnik, Croatia, March 21–24, 2017 p47

    [34]

    Li F Z, Feng Z M, Li P, You Z 2017 PLoS One 12 e0171107Google Scholar

    [35]

    Wang X B, Li F Z, Bu W, Yu X 2017 Proceedings of 4th International Conference on Industrial Economics System and Industrial Security Engineering Kyoto, Japan, July 24–27, 2017 p1

    [36]

    Tian Y 2020 Land 9 159Google Scholar

    [37]

    Zheng W S, Kuang A P, Wang X W, Chen J 2020 Chin. Geogra. Sci. 30 677Google Scholar

    [38]

    Kraemer M U G, Golding N, Bisanzio D, et al. 2019 Sci. Rep. 9 1Google Scholar

    [39]

    Dalziel B D, Pourbohloul B, Ellner S P 2013 Proc. R. Soc. B 280 20130763Google Scholar

    [40]

    Tizzoni M, Bajardi P, Decuyper A, et al. 2014 PLoS Comput. Biol. 10 e1003716Google Scholar

    [41]

    Wen T H, Hsu C S, Hu M C 2018 Int. J. Health Geographics 17 1Google Scholar

    [42]

    Kramer A M, Pulliam J T, Alexander L W, Park A W, Rohani P 2016 R. Soc. Open Sci. 3 160294Google Scholar

    [43]

    Zhang G H, Li J M, Li S J, Wang Y 2018 Int. J. Environ. Res. Public Health 15 1824Google Scholar

    [44]

    祖正虎, 许晴, 张斌, 徐展凯, 郑涛 2015 系统工程理论与实践 35 2513Google Scholar

    Zu Z H, XU Q, Zhang B, Xu Z K, Zheng T 2015 System Eng. Theor. Prac 35 2513Google Scholar

    [45]

    Zhu G H, Xiao J P, Zhang B, et al. 2018 Sci. Total Environ. 622 252Google Scholar

    [46]

    Sjödin H, Johansson A F, Brännström Å, et al. 2020 Int. J. Epidemiol. 0 1Google Scholar

    [47]

    Akhmetzhanov A R, Mizumoto K, Jung S M, Linton N M, Omori R, Nishiura H 2020 arXiv: 2020.04.24.20077800 [medical]

    [48]

    Porojan A 2001 Open Econ. Rev. 12 265Google Scholar

    [49]

    de Dios Ortuzar J, Willumsen L G 2011 Modelling Transport (West Sussex: John Wiley & Sons) p182

    [50]

    Sheppard E S 1978 Geogr. Anal. 10 386Google Scholar

    [51]

    Hua C I, Porell F 1979 Int. Regional Sci. Rev. 4 97Google Scholar

    [52]

    Barthélemy M 2011 Phys. Rep. 499 147Google Scholar

    [53]

    Pan R K, Kaski K, Fortunato S 2012 Sci. Rep. 2 902Google Scholar

    [54]

    Szell M, Sinatra R, Petri G, Thurner S, Latora V 2012 Sci. Rep. 2 457Google Scholar

  • 图 1  介入机会说明 (a) 原始地图, 其中每个圆代表一个地点, 地点i是起点, 其他地点是潜在的目的地; 人口越多的地点, 机会越多, 圆面积越大; (b)介入机会, 按照距离起点的远近排序, 目的地j与起点i之间的所有地点的介入机会为$ s_{ij} = m_a+m_b+m_c+m_d $(不包含起终点)或$ S_{ij} = m_i+s_{ij}+m_j $(包含起终点), 其中$ m_l $是地点l的机会

    Fig. 1.  Intervening opportunities illustration. (a) Sketch map. Each circle represents a location. Location i is the origin, and the other locations are potential destinations. The larger the population, the more opportunities, the larger the circle. (b) Intervening opportunities. All locations are sorted by their distance from location i. The intervening opportunities are all opportunities of the locations between i and j such that $ s_{ij} = m_a+m_b+m_c+m_d $ (excluding the origin and destination) or $ S_{ij} = m_i+s_{ij}+m_j $ (including the origin and destination), where $ m_l $ is the number of opportunities at location l.

    图 2  统一机会模型对14个数据集的最优参数取值

    Fig. 2.  The optimal values of the parameters $ \alpha $ and $ \beta $ for the fourteen data sets

    表 1  几种介入机会类模型的属性特征比较

    Table 1.  Comparison of attributes of several intervening opportunity models.

    模型名称 适用类型 有无参数
    介入机会模型
    辐射模型 通勤
    人口权重机会模型 城市内、城市间
    审慎社交模型 个体间社会交往
    机会优先选择模型 城市内、城市间
    统一机会模型 求职、迁移、货运、通勤、城市内、城市间
    下载: 导出CSV
  • [1]

    闫小勇 2019 超越引力定律 (北京: 科学出版社) 第1−3页

    Yan X Y 2019 Beyond Gravity Law (Beijing: China Science Press) pp1−3 (in Chinese)

    [2]

    Desart H G 1846 Chemin de fer Direct de Bruxelles vers Gand, par Alost, en Communication avec les Stations Diverses (Bruxelles: Devroye) p16

    [3]

    Huang Z R, Wang P, Zhang F, Gao J X, Schich M 2018 Transport. Res. Part B 114 147Google Scholar

    [4]

    Xia C Y, Wang Z H, Zheng C Y, Guo Q T, Shi Y T, Dehmer M, Chen Z Q 2019 Inf. Sci. 471 185Google Scholar

    [5]

    Jia J S, Lu X, Yuan Y, Xu G, Jia J M, Christakis N A 2020 Nature 582 389Google Scholar

    [6]

    Giles J R, Erbach-Schoenberg E Z, Tatem A J, et al. 2020 Proc. Natl. Acad. Sci. U.S.A. 117 22572Google Scholar

    [7]

    周涛, 韩筱璞, 闫小勇, 杨紫陌, 赵志丹, 汪秉宏 2013 电子科技大学学报 42 481Google Scholar

    Zhou T, Han X P, Yan X Y, Yang Z M, Zhao Z D, Wang B H 2013 J. Uiv. Electron. Sci. Technol. China 42 481Google Scholar

    [8]

    闫小勇 2020 物理学报 69 088903

    Yan X Y 2020 Acta Phys. Sin. 69 088903

    [9]

    Stouffer S A 1940 Am. Sociol. Rev. 5 845Google Scholar

    [10]

    Newton I 1729 Mathematical Principles of Natural Philosophy (London: Benjamin Motte Publisher) p5

    [11]

    Wilson A G 1967 Transp. Res. 1 253Google Scholar

    [12]

    Pressé S, Ghosh K, Lee J, Dill K A 2013 Rev. Mod. Phys. 85 1115Google Scholar

    [13]

    Barbosa H, Barthélemy M, Ghoshal G, et al. 2018 Phys. Rep. 734 1Google Scholar

    [14]

    Simini F, González M C, Maritan A, Barabási A L 2012 Nature 484 96Google Scholar

    [15]

    Ren Y H, Ercsey-Ravasz M, Wang P, González M C, Toroczkai Z 2014 Nat. Commun. 5 5347Google Scholar

    [16]

    Simini F, Maritan A, Néda Z 2013 PLoS One 8 e60069Google Scholar

    [17]

    Varga L, Tóth G, Néda Z 2016 Regional Statistics 6 27Google Scholar

    [18]

    Varga L, Tóth G, Néda Z 2018 EPJ Data Sci. 7 37Google Scholar

    [19]

    Yan X Y, Zhao C, Fan Y, Di Z R, Wang W X 2014 J. R. Soc. Interface 11 20140834Google Scholar

    [20]

    Yan X Y, Wang W X, Gao Z Y, Lai Y C 2017 Nat. Commun. 8 1639Google Scholar

    [21]

    Sim A, Yaliraki S N, Barahona M, Stumpf M P 2015 J. R. Soc. Interface 12 20150315Google Scholar

    [22]

    Liu E J, Yan X Y 2019 Physica A 526 121023Google Scholar

    [23]

    Liu E J, Yan X Y 2020 Sci. Rep. 10 4657Google Scholar

    [24]

    闫小勇 2017 科技导报 35 15Google Scholar

    Yan X Y 2017 Sci. Technol. Rev. 35 15Google Scholar

    [25]

    Kang C G, Liu Y, Guo D S, Qin K 2015 PLoS One 10 e0143500Google Scholar

    [26]

    Yang Y X, Herrera C, Eagle N, Gonzélez M C 2014 Sci. Rep. 4 5662Google Scholar

    [27]

    闫小勇 2014 博士学位论文 (北京: 北京师范大学) 第39−43页

    Yan X Y 2014 Ph. D. Dissertation (Beijing: Beijing Normal University) pp39−43 (in Chinese)

    [28]

    Zhao Y M, Zeng A, Yan X Y, Wang W X, Lai Y C 2016 New J. Phys. 18 053025Google Scholar

    [29]

    Hu B Y, Ma Y L, Pei Y L, Gao W 2020 Transportmetrica A 16 1062Google Scholar

    [30]

    Forghani M, Karimipour F 2018 Trans. GIS 22 1008Google Scholar

    [31]

    Bassolas A, Barbosa-Filho H, Dickinson B, et al. 2019 Nat. Commun. 10 1Google Scholar

    [32]

    Zhao Y B, Wu G Z, Gong Y X, Yang M Z, Ni H G 2019 Sci. Total Environ. 679 378Google Scholar

    [33]

    Cazabet R, Borgnat P, Jensen P 2017 Proceedings of the 8th International Conference on Complex Networks Dubrovnik, Croatia, March 21–24, 2017 p47

    [34]

    Li F Z, Feng Z M, Li P, You Z 2017 PLoS One 12 e0171107Google Scholar

    [35]

    Wang X B, Li F Z, Bu W, Yu X 2017 Proceedings of 4th International Conference on Industrial Economics System and Industrial Security Engineering Kyoto, Japan, July 24–27, 2017 p1

    [36]

    Tian Y 2020 Land 9 159Google Scholar

    [37]

    Zheng W S, Kuang A P, Wang X W, Chen J 2020 Chin. Geogra. Sci. 30 677Google Scholar

    [38]

    Kraemer M U G, Golding N, Bisanzio D, et al. 2019 Sci. Rep. 9 1Google Scholar

    [39]

    Dalziel B D, Pourbohloul B, Ellner S P 2013 Proc. R. Soc. B 280 20130763Google Scholar

    [40]

    Tizzoni M, Bajardi P, Decuyper A, et al. 2014 PLoS Comput. Biol. 10 e1003716Google Scholar

    [41]

    Wen T H, Hsu C S, Hu M C 2018 Int. J. Health Geographics 17 1Google Scholar

    [42]

    Kramer A M, Pulliam J T, Alexander L W, Park A W, Rohani P 2016 R. Soc. Open Sci. 3 160294Google Scholar

    [43]

    Zhang G H, Li J M, Li S J, Wang Y 2018 Int. J. Environ. Res. Public Health 15 1824Google Scholar

    [44]

    祖正虎, 许晴, 张斌, 徐展凯, 郑涛 2015 系统工程理论与实践 35 2513Google Scholar

    Zu Z H, XU Q, Zhang B, Xu Z K, Zheng T 2015 System Eng. Theor. Prac 35 2513Google Scholar

    [45]

    Zhu G H, Xiao J P, Zhang B, et al. 2018 Sci. Total Environ. 622 252Google Scholar

    [46]

    Sjödin H, Johansson A F, Brännström Å, et al. 2020 Int. J. Epidemiol. 0 1Google Scholar

    [47]

    Akhmetzhanov A R, Mizumoto K, Jung S M, Linton N M, Omori R, Nishiura H 2020 arXiv: 2020.04.24.20077800 [medical]

    [48]

    Porojan A 2001 Open Econ. Rev. 12 265Google Scholar

    [49]

    de Dios Ortuzar J, Willumsen L G 2011 Modelling Transport (West Sussex: John Wiley & Sons) p182

    [50]

    Sheppard E S 1978 Geogr. Anal. 10 386Google Scholar

    [51]

    Hua C I, Porell F 1979 Int. Regional Sci. Rev. 4 97Google Scholar

    [52]

    Barthélemy M 2011 Phys. Rep. 499 147Google Scholar

    [53]

    Pan R K, Kaski K, Fortunato S 2012 Sci. Rep. 2 902Google Scholar

    [54]

    Szell M, Sinatra R, Petri G, Thurner S, Latora V 2012 Sci. Rep. 2 457Google Scholar

  • [1] 孙皓宸, 刘肖凡, 许小可, 吴晔. 基于连续感染模型的新冠肺炎校园传播与防控策略分析. 物理学报, 2020, 69(24): 240201. doi: 10.7498/aps.69.20201106
    [2] 杨慧, 唐明, 蔡世民, 周涛. 异质自适应网络中的核心-边缘结构及其对疾病传播的抑制作用. 物理学报, 2016, 65(5): 058901. doi: 10.7498/aps.65.058901
    [3] 张龙, 翁征宇. Hubbard模型中的相位弦效应与交互Chern-Simons理论. 物理学报, 2015, 64(21): 217101. doi: 10.7498/aps.64.217101
    [4] 舒盼盼, 王伟, 唐明, 尚明生. 花簇分形无标度网络中节点影响力的区分度. 物理学报, 2015, 64(20): 208901. doi: 10.7498/aps.64.208901
    [5] 江浩, 周杰, 菊池久和, 邵根富. 基于三维空间域移动通信统计信道的多普勒效应. 物理学报, 2014, 63(4): 048702. doi: 10.7498/aps.63.048702
    [6] 欧阳博, 金心宇, 夏永祥, 蒋路茸, 吴端坡. 疾病传播与级联失效相互作用的研究:度不相关网络中疾病扩散条件的分析. 物理学报, 2014, 63(21): 218902. doi: 10.7498/aps.63.218902
    [7] 王辉, 韩江洪, 邓林, 程克勤. 基于移动社交网络的谣言传播动力学研究. 物理学报, 2013, 62(11): 110505. doi: 10.7498/aps.62.110505
    [8] 胡兆龙, 刘建国, 任卓明. 基于节点度信息的自愿免疫模型研究. 物理学报, 2013, 62(21): 218901. doi: 10.7498/aps.62.218901
    [9] 巩永旺, 宋玉蓉, 蒋国平. 移动环境下网络病毒传播模型及其稳定性研究. 物理学报, 2012, 61(11): 110205. doi: 10.7498/aps.61.110205
    [10] 张彦超, 刘云, 张海峰, 程辉, 熊菲. 基于在线社交网络的信息传播模型. 物理学报, 2011, 60(5): 050501. doi: 10.7498/aps.60.050501
    [11] 周骏, 任海东, 冯亚萍. 强非局域光晶格中空间孤子的脉动传播. 物理学报, 2010, 59(6): 3992-4000. doi: 10.7498/aps.59.3992
    [12] 郭进利. 一个人类行为动力学模型及其精确解. 物理学报, 2010, 59(6): 3851-3855. doi: 10.7498/aps.59.3851
    [13] 费蓉, 崔杜武. 马尔可夫随机过程中移动对象的空间特征分析及近似逼近研究. 物理学报, 2009, 58(8): 5133-5141. doi: 10.7498/aps.58.5133
    [14] 温罗生, 杨小帆, 钟 将. 在二部无标度网上的两性疾病传播. 物理学报, 2008, 57(8): 4794-4799. doi: 10.7498/aps.57.4794
    [15] 张 民, 吴振森. 脉冲波在空间等离子体介质中传播的矩分析及其应用. 物理学报, 2007, 56(10): 5937-5944. doi: 10.7498/aps.56.5937
    [16] 周华亮, 高自友, 李克平. 准移动闭塞系统的元胞自动机模型及列车延迟传播规律的研究. 物理学报, 2006, 55(4): 1706-1710. doi: 10.7498/aps.55.1706
    [17] 殷久利, 田立新. 一类非线性方程的compacton解及其移动compacton解. 物理学报, 2004, 53(9): 2821-2827. doi: 10.7498/aps.53.2821
    [18] 王红成, 王晓生, 佘卫龙, 任国斌, 王 智, 娄淑琴, 简水生. 空间相位调制对光伏孤子传播的影响. 物理学报, 2004, 53(8): 2595-2599. doi: 10.7498/aps.53.2595
    [19] 杜奎, 王元明, 王忠明, 朱仕学. 实空间动力学衍射传播因子的精确计算与分析. 物理学报, 1997, 46(2): 332-339. doi: 10.7498/aps.46.332
    [20] 潘少华, 罗棨光, 刘福绥. A-15超导化合物的d带相对移动模型. 物理学报, 1980, 29(7): 836-842. doi: 10.7498/aps.29.836
计量
  • 文章访问数:  8431
  • PDF下载量:  275
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-13
  • 修回日期:  2020-10-03
  • 上网日期:  2020-11-27
  • 刊出日期:  2020-12-20

/

返回文章
返回