-
测量了晶格匹配InAlN/GaN异质结肖特基接触的反向变温电流-电压特性曲线, 研究了反向漏电流的偏压与温度依赖关系. 结果表明: 1)电流是电压和温度的强函数, 饱和电流远大于理论值, 无法采用经典热发射模型解释; 2)在低偏压区, 数据满足
$\ln(I/E)\text{-}E^{1/2}$ 线性依赖关系, 电流斜率和激活能与Frenkel-Poole模型的理论值接近, 表明电流应该为FP机制占主导; 3)在高偏压区, 数据满足$ \ln(I/E^2)\text{-}E^{-1} $ 线性依赖关系, 电流斜率不随温度改变, 表明Fowler-Nordheim隧穿机制占主导; 4)反向电流势垒高度约为0.60 eV, 远低于热发射势垒高度2.91 eV, 表明可导位错应是反向漏电流的主要输运通道, 局域势垒由于潜能级施主态电离而被极大降低.In this paper, the temperature-dependent current-voltage (T-I-V) characteristics of lattice-matched InAlN/GaN heterostructure Schottky contact in a reverse direction are measured, and the voltage dependence and temperature dependence of the leakage current are studied. The obtained results are as follows.1) The reverse current is a strong function of voltage and temperature, and the saturation current is much larger than the theoretical value, which cannot be explained by the classical thermionic emission (TE) model. 2) In the low-bias region, the$ \ln(I/E)\text{-}E^{1/2} $ data points obey a good linear relationship, whose current slope and corresponding activation energy are close to the values predicted by the Frenkel-Poole (FP) model, indicating the dominant role of the FP emission mechanism. 3) In the high-bias region, the$ \ln(I/E^2)\text{-}E^{-1} $ data points also follow a linear dependence, but the current slope is a weak function of temperature, indicating that the Fowler-Nordheim tunneling mechanism should be mainly responsible for the leakage current. 4) The current barrier height is extracted to be about 0.60 eV, which is much lower than the value of 2.91 eV obtained from the TE model, confirming the primary leakage path of the conductive dislocations, where the localized barrier is significantly reduced due to the ionization of shallow donor-like traps.-
Keywords:
- reverse leakage current /
- bias and temperature /
- conductive dislocations /
- shallow donor state
[1] Gadanecz A, Bläsing J, Dadgar A, Hums C, Krost A 2007 Appl. Phys. Lett. 90 084505
[2] Kuzmik J, Kostopoulos A, Konstantinidis G, et al. 2006 IEEE Trans. Electron Devices 53 422Google Scholar
[3] Filippov I A, Shakhnov V A, Velikovskii L E, Brudnyi P A, Demchenko O I 2020 Russ. Phys. J. 63 94Google Scholar
[4] Hums C, Bläsing J, Dadgar A, et al. 2007 Appl. Phys. Lett. 90 022105Google Scholar
[5] Jeganathan K, Shimizu M 2014 AIP Adv. 4 097113Google Scholar
[6] Wang R H, Saunier P, Tang Y, et al. 2011 IEEE Electron. Device Lett. 32 309Google Scholar
[7] Hsu J W P, Manfra M J, Lang D V, et al. 2001 Appl. Phys. Lett. 78 1685Google Scholar
[8] Kaun S W, Wong M H, Dasgupta S, Choi S, Chung R, Umesh K M, James S S 2011 Appl. Phys. Express 4 417Google Scholar
[9] Zhang H, Miller E J, Yu E T 2006 J. Appl. Phys. 99 247
[10] Miller E J, Schaadt D M, Yu E T, Poblenz C, Elsass C, Speck J S 2002 J. Appl. Phys. 91 9821Google Scholar
[11] Xu J X, Wang R, Zhang L, Zhang S Y, Zheng P H, Zhang Y, Song Y, Tong X D 2020 Appl. Phys. Lett. 117 023501Google Scholar
[12] Miller E J, Yu E T, Waltereit P, Speck J S 2004 Appl. Phys. Lett. 84 535Google Scholar
[13] Arslan E, Bütün S, Ozbay E 2009 Appl. Phys. Lett. 94 142106Google Scholar
[14] Chen L L, Schrimpf R D, Fleetwood D M, et al. 2020 IEEE Trans. Electron Devices 67 841Google Scholar
[15] Zhou Y, Xu Z, Li J T 2019 Appl. Phys. A 125 881Google Scholar
[16] Kuzmik J 2001 IEEE Electron. Device Lett. 22 510Google Scholar
[17] Ren J, Yan D, Yang G, Wang F X, Xiao S Q, Gu X F 2015 J. Appl. Phys. 117 123502Google Scholar
[18] Yan D W, Lu H, Cao D S, Chen D J, Zhang R, Zheng Y D 2010 Appl. Phys. Lett. 97 023703Google Scholar
[19] Arslan E, Altındal Ş, Özçelik S, Ozbay E 2009 J. Appl. Phys. 105 23705Google Scholar
[20] 王翔, 陈雷雷, 曹艳荣, 羊群思, 朱培敏, 杨国锋, 王福学, 闫大为, 顾晓峰 2018 物理学报 67 177202Google Scholar
Wang X, Chen L L, Cao Y R, Yang Q S, Zhu P M, Yang G F, Wang F X, Yan D W, Gu X F 2018 Acta Phys. Sin. 67 177202Google Scholar
[21] Saadaoui S, Fathallah O, Maaref H 2020 Mater. Sci. Semicond. Process. 115 105100Google Scholar
-
-
[1] Gadanecz A, Bläsing J, Dadgar A, Hums C, Krost A 2007 Appl. Phys. Lett. 90 084505
[2] Kuzmik J, Kostopoulos A, Konstantinidis G, et al. 2006 IEEE Trans. Electron Devices 53 422Google Scholar
[3] Filippov I A, Shakhnov V A, Velikovskii L E, Brudnyi P A, Demchenko O I 2020 Russ. Phys. J. 63 94Google Scholar
[4] Hums C, Bläsing J, Dadgar A, et al. 2007 Appl. Phys. Lett. 90 022105Google Scholar
[5] Jeganathan K, Shimizu M 2014 AIP Adv. 4 097113Google Scholar
[6] Wang R H, Saunier P, Tang Y, et al. 2011 IEEE Electron. Device Lett. 32 309Google Scholar
[7] Hsu J W P, Manfra M J, Lang D V, et al. 2001 Appl. Phys. Lett. 78 1685Google Scholar
[8] Kaun S W, Wong M H, Dasgupta S, Choi S, Chung R, Umesh K M, James S S 2011 Appl. Phys. Express 4 417Google Scholar
[9] Zhang H, Miller E J, Yu E T 2006 J. Appl. Phys. 99 247
[10] Miller E J, Schaadt D M, Yu E T, Poblenz C, Elsass C, Speck J S 2002 J. Appl. Phys. 91 9821Google Scholar
[11] Xu J X, Wang R, Zhang L, Zhang S Y, Zheng P H, Zhang Y, Song Y, Tong X D 2020 Appl. Phys. Lett. 117 023501Google Scholar
[12] Miller E J, Yu E T, Waltereit P, Speck J S 2004 Appl. Phys. Lett. 84 535Google Scholar
[13] Arslan E, Bütün S, Ozbay E 2009 Appl. Phys. Lett. 94 142106Google Scholar
[14] Chen L L, Schrimpf R D, Fleetwood D M, et al. 2020 IEEE Trans. Electron Devices 67 841Google Scholar
[15] Zhou Y, Xu Z, Li J T 2019 Appl. Phys. A 125 881Google Scholar
[16] Kuzmik J 2001 IEEE Electron. Device Lett. 22 510Google Scholar
[17] Ren J, Yan D, Yang G, Wang F X, Xiao S Q, Gu X F 2015 J. Appl. Phys. 117 123502Google Scholar
[18] Yan D W, Lu H, Cao D S, Chen D J, Zhang R, Zheng Y D 2010 Appl. Phys. Lett. 97 023703Google Scholar
[19] Arslan E, Altındal Ş, Özçelik S, Ozbay E 2009 J. Appl. Phys. 105 23705Google Scholar
[20] 王翔, 陈雷雷, 曹艳荣, 羊群思, 朱培敏, 杨国锋, 王福学, 闫大为, 顾晓峰 2018 物理学报 67 177202Google Scholar
Wang X, Chen L L, Cao Y R, Yang Q S, Zhu P M, Yang G F, Wang F X, Yan D W, Gu X F 2018 Acta Phys. Sin. 67 177202Google Scholar
[21] Saadaoui S, Fathallah O, Maaref H 2020 Mater. Sci. Semicond. Process. 115 105100Google Scholar
计量
- 文章访问数: 5772
- PDF下载量: 89
- 被引次数: 0